

JULY 1989 PeSIT VERSON 1 CHAPTER 1

CONTENTS

JULY 1989 PeSIT VERSON1 CHAPTER 1 S-2

CHAPTER 1 .. 1

1 INTRODUCTION ... 2

1.1 SCOPE .. 2

1.2 PRESENTATION ... 3

1.2.1 Outline .. 3

1.2.2 Modifications introduced by the Version E ... 4

CHAPTER 2 .. 6

2 ARCHITECTURE AND FUNCTIONAL DESCRiPTION .. 7

2.1 REFERENCE MODEL ... 7

2.2 VIRTUAL FILE MODEL ... 1 0

2.3 FUNCTIONAL DESCRIPTION OF THE PESIT SERVICE AND PROTOCOL 1 1

2.3.1 PeSIT service functions .. 1 1

2.3.1.1 Write file ... 11

2.3.1.2 Read file ... 11

2.3.1.3 Checkpointing .. 12

2.3.1.4 Transfer recovery ... 1 2

2.3.1.5 Reslart during a Iransfer. ... 1 2

2.3.1.6 Transfer suspension .. 1 2

2.3.1.7 Transfer security .. 13

2.3.1.8 Data compression ... 1 3

2.3.1.9 Error control ... 13

2.3.1 .10 Datagram transfer ... 1 3

2.3.2 Functional unit concept .. 1 4

2.3.3 Profile concepl ... 15

JULY 1989 PeSIT VERSION 1 CHAPTER 1 S ·3

CHAPTER 3 .. 16

3 PeS IT SERVICE DESCRIPTION .. 1 7

3.1 INTRODUCTION TO THE SERViCE ... 17

3.1.1 Srope .. 17

3.1.2 Partner roles ... 17

3.2 REGIMES OF THE FILE SERViCE ... 1 7

3.3 SERVICES OF THE PeSIT FILE SERViCE ... 19

3.4 FUNCTIONAL UNITS ... 20

3.5 DEFINITION OF A PROFILE .. 22

3.6 DESCRIPTION OF THE SERVICE PRIMITiVES .. 23

3.6.1 Correspondance between service and primitives .. 2 3

3.6.2 Conventions .. 24

3.6.3 Description of the primitives .. 2 5

a)F.CONNECT Service ... 25

b) F.RELEASE Service .. 26

c) F.ABORT Service .. 26

d)F.CREATE Service .. 27

e)F.SELECT Service .. 28

f)F.OPEN Service .. 30

g)F.CLOSE Service .. 3 1

h)F.DESELECT Service ... 31

i)F.READ Service .. 32

ilF.WRITE Service ... 33

k)F.DATA Service ... 33

I)F.DATA.END Service .. 34

m)F.TRANSFER.END Service .. 34

n)F.CANCEL Service ... 35

o)F.CHECK Service ... 35

p)F.RESTART Service ... 36

q)F.MESSAGE Service ... 37

JULY 1989 PeSIT VERSON 1 CHAPTER 1 S-4

3_7 DESCRIPTION OF THE PARAMETERS ... __ 38

a) CRC Usage ... 3 8

b) Diagnostics ... 38

c) Caller and server identification .. 38

d) Access control .. 3 8

e) Version number ... 3 8

f) Option checkpointing .. 39

g) File identifier4 0

h) Transfer identifier .. 40

i) Requested attributes ... 4 1

j) Recovered transfer .. 4 1

k) Data coding .. .4 t

I) Transfer priority ... 41

m) Recovery pOint. ... 4 1

n) End of transfer code ... 4 1

0) Checkpoint number .. 41

p) Compression .. 42

q) Access type .. .4 2

r) Restarting .. 42

s) Maximum size of a data element4 2

t) Protocol monitoring time-out .. .4 2

u) Number of data bytes ... 42

v) Number of articles .. 4 3

w) Diagnostic complements .. 4 3

x) File attributes ... 4 3

y) Customer and bank identifiers .. 4 4

z) File access control .. .4 4

aa) Server date and time .. 44

ab) Free text ... 44

ac) File article ... 4 5

ad) Datagram .. 4 5

JULY 1989 PaSIT VERSION 1 CHAPTER 1 S·5

3.8 PROFILE DESCRiPTIONS .. 45

3.8.1 SIT profile4 5

3.8.2 Non-SIT Profile ... 4 7

3.8.3 Secure Non-SIT Profile ... 48

3.8.4 ETEBACS profile4 9

3.9 PESIT SECURITY SERViCE ... 50

3.9.1 Functions provided ... 50

3.9.2 Description of the primitives .. 5 0

a)F .CREA TE Service ... "'" '5 1

b)F .SELECT Service .. 5 2

c)F.OPEN Service ... 52

d)F.CHECK Service ... 53

elF .DATA. END Service .. "" ""5 3

nF.TRANSFER.END Service .. 53

g) F.MESSAGE Service ... " 5 4

3.9.3 Parameter description ... 55

a) Authentication type ... 55

blAuthentication elements ... 5 5

clMAC computation type ... 5 5

dlMAC computation elements ... 5 5

elEncryption type .. 5 6

flEncryption elements ... 5 6

g)Digital signature type ... 56

h) MAC " .. """""'"'''''' 5 6

i)Digital signature ... 5 7

jlCertificate ... 57

k)Acknowledgment of the Digital signature ... 5 7

I)Second Digital signature .. 57

m)Second certificate .. 5 7

JULY 1989 PeSIT VERSON1 CHAPTER 1 $-6

3.10 EXAM PLES OF PRI MITIVE S EQU EN CES .. 5 8

3.10.1 Normal sequence .. 58

3.10.2 Normal sequence for a write transfer ... 69

3.1 0.3 Normal sequence for a read transfer ... 7 0

3.10.4 Sequence with interruption of the file transfer 71

3.10.5 Sequence with restarting ... 72

CHA PTER 4 .. 7 3

4 DESCRIPTION OF TH E PoSIT PROTOCOL ... 7 3

4.1 I NTROD U CTI ON ... """ ... """"" .. """"""""."."" .. "."" 7 4

4.2 SERVICE AND PROTOCOL CORRESPONDANCE .. 74

4_3 USE OF THE "COMMUNICATION SYSTEM" SERVICE 76

4.3.1 Use of the Session service by PeSIT.F ... 77

4.3.2 Use of the Network service by PeSIT.F' ... 8 2

4.3.2.1 Use of a synchronous X.2S link ... 8 2

4.3.2.2 Use of a dial-up X.32 link ... 8 2

4.3.2.3 Use of an asynchronous link (PAD) .. 8 2

4.3.3 Use of the Netex service by PeSIT.F" · ... 8 4

4.3.4 Use of the Session service on a local area network by PeSIT.F"' 8 6

JULY 1989 PeSIT VERSION 1 CHAPTER 1 8·7

4.4 PROTOCOL UNIT (FPDU) SPECIFIC PROCEDURES .. 87

4.4.1 FPDU.CONNECT .. 87

4.4.2 FPDUACONNECT .. 88

4.4.3 FPDU.RCONNECT.. .. 89

4.4.4 FPDU.CREATE .. 9 0

4.4.5 FPDU.ACK(CREATE) .. 90

4.4.6 FPDU.SELECT.. ... 91

4.4.7 FPDU.ACK(SELECT) .. 9 2

4.4.8 FPDU.DESELECT .. 9 2

4.4.9 FPDU.ACK(DESELECT) .. 93

4.4.10 FPDU.ORF .. 9 4

4.4.11 FPDU.ACK(ORF) .. 94

4 .4. 1 2 FPDU.CRF .. 9 5

4.4.13 FPDU.ACK(CRF) .. 96

4.4.14 FPDU.READ .. 96

4.4.1 5 FPDU.ACK(READ) .. "'" 9 7

4.4.16 FPDU.WRITE .. 98

4.4.17 FPDU.ACK(WRITE) ... 9 8

4.4 .18 FPDU.TRANS.END .. 9 9

4.4.1 9 FPDU.ACK(TRANS.END) .. 1 00

4.4.20 FPDU.DTF. FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA 1 00

4.4.20.1 FPDU.DTF single arlicle .. 1 00

4.4.20.2 FPDU.DTF mulli article ... 1 0 I

4.4.20.3 Segmentation of articles .. 1 02

4.4.21 FPDU.DTF.END ... 103

4.4.22 FPDU.SYN .. 104

4.4.23 FPDU.ACK(SYN) .. 105

4.4.24 FPDU.RESYN .. 106

JULY 1989 PeSIT VERSON1 CHAPTER 1 S -8

4.4.25 FPDU.ACK(RESyN) .. 106

4.4.26 FPDU.REUEASE .. 107

4.4.27 FPDU.RELCONF .. 108

4.4.28 FPDU.ABORT .. 108

4.4.29 FPDU.lDT ... 110

4.4.30 FPDU.ACK(IDT) ... 110

4.4 .31 FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGM 111

4.4.31.1 FPDU.MSG .. 111

4.4.31.2 Segmentation of Datagrams .. 11 2

4.4.32 FPDU.ACK(MSG) ... 113

4.5 CONCATENATION OF FPDUS ... 114

4.6 PESIT PROTOCOL TIME-OUTS .. 114

4.7 STRUCTURE AND CODING OF PESIT PROTOCOL UNITS (FPDU) 116

4.7.1 Structure of a protocol element. .. "." ... 116

4.7.2 Coding of the parameters ... 119

4.7.2.1 Coding conventions ... 119

4.7.2.2 Lisl of Ihe PGI and PI codes .. 122

4.7.3 Parameter descriptions ... 124

4.7.4 Protocol element structure ... 181

4.8 PESIT PROTOCOL STATE MACHINE TABLES .. 20 1

4.8.1 Formal description elements ... 201

4.8.1.1 Slales .. 201

4.8.1.2 Events ... 202

4.8.1.3 Conditions ... 203

4.8.1.4 Actions .. " 204

4.8.2 Conventions .. 205

4.8.3 Collision rules " .. 206

4.8.4 Slale lables ... 206

JULY 1989 PeSIT VERSkJN 1 CHAPTER 1 S-9

ANNEXE 1 COMPRESSION

ANNEXE 2 STORE AND FORWARO OPERATION

ANNEXE 3 USE OF THE SECURITY MECHANISMS

ANNEXE 4 ERROR DIAGNOSTICS

ANNEXE 5 SUMMARY OF THE PROTOCOL UNITS AND THEIR PARAMETERS

JULY 1989 PeS IT VERSON 1

CHAPTER 1

INTRODUCTION

CHAPTER 1

JULY 1989 PeSIT VERSkJN 1 CHAPTER 1 2

1 INTRODUCTION

1.1 Scope

The object of these specifications is to define the PeSIT file transfer
protocol.

PeSIT was originally conceived for use within the French Interbank Electronic
payment clearance system hence its name (Protocol for data Exchange within the
French System for Interbank Tele-clearance).

This protocol is used in particular to connect the Bank Processing Centres (CTB)
owned by the members of the SIT network to the SIT gateways.

However the use of PeSIT is not limited to these connections and may indeed be
used in the most varied environnements.

With the intention of enabling the diverse implementations of PeS IT to inter
operate, several PeS IT user profiles have been defined which correspond with
the different distinct application domaines of PeSIT.

Four profiles (SIT t Non-SIT, Secure Non-SIT and ETEBAC5) are described in
these specifications. Others may be defined if the need becomes felt though the
proliferation of profiles is not encouraged.

JULY 1989 PeSIT VERSON1 CHAPTER 1 3

1.2 Presentation

1.2.1 Outline

The first chapter presents the Introduction to this document.
Having presented the outline, a second paragraph details the
modifications introduced by the version El compared to the version D
of 15 november 1987.

The second chapter Architecture and fUnctional
description, compares PeSIT with the ISO/OSI reference model,
introduces the virtual file concept and summarizes the different
functions provided by PeSIT. This chapter terminates with an
introduction to the concepts of the functional unit and the profile.

The third chapter PeSIT service description commences with
a presentation of the concept of service, lists the different service
phases in PeSIT, followed by the different services which make up the
PeS IT service. The functional units are defined as a collection of
services and the concept of profile is further detailed. The paragraphs
Description of the service primitives and Description of
the parameters presents the service primitives one by one with
their parameters, except for those directly related to the Security
functional unit. The paragraph Profile descriptions details the
characteristics of each profile. The paragraph PeSIT security
service covers all aspects of the service linked with the Security
functional unit (both the primitives and the parameters). The last
paragraph Examples of primitive sequences presents the
characteristic automates of the PeSIT service and gives some
examples of primitive sequencing.

The fourth chapter Description of the PeSIT protocol
describes the correspondance between the service primitives and the
protocol units. The paragraph Use of the communication system
service presents the different types of interface for PeSIT.F,
PeSIT.F", PeSIT.F" and PeSIT.F". This is followed by the procedures
corresponding with each protocol unit (FPDU). The succeding
paragraphs give the rules for concatenating FPDUs and the use of the
protocol time-outs. The paragraph Structure and coding of
PeSIT protocol units presents the parameter coding conventions,
lists the parameters and for each one schematizes its format for each
of the four profiles. Following this the contents of each parameter is
detailed for each profile. The last paragraph provides the automate
state tables for the PeSIT protocol.

Annexe A defines the different compression modes allowed and the
method used to negotiate the compression mode between two partners.
Annexe B defines how to use PeSIT in a Store and Forward mode.
Annexe C details the use of the security mechanisms (ETEBAC5 and
Secure Non-SIT profiles).
Annexe D contains the list of the error diagnostics.
Annexe E summarizes the protocol units and their parameters.

1 References in this document to previous versions of PeSIT are to the
French versions (the version E is the first version translated into
English).

JULY 1989

1.2.2

PeSIT VERSON 1 CHAPTER 1 4

Modifications Introduced by the Version E

The concept of functional units and profiles has been added in the
version E to clarify the presentation of the document. The increase in
the number of parameters whose format is dependant on the profile
has led to presenting each parameter on a separate page allowing its
format and significance to be detailed for each profile. This
modification means that the presentation of contents of the FPDUs has
also been changed: for each profile the FPDUs are represented as a
collection of parameters whose graphical representation defines their
use (required, optional with or without a default value, conditional).
However the contents of the parameters is not shown in the
description of the FPDUs.

In detail the modifications are as follows:

SIT Profile :

The PeSIT protocol described in this document using the SIT profile is
identical to the version D of 15 november 1987. All the special
features of PeSIT SIT have been assembled in the paragraph 3.8.1 and
can be found in the description of the parameters and the protocol
units for the SIT profile. Some details which were absent from the
version D of PeSIT, existing only in internal documents of the SIT
project, have been included in the paragraph 3.8.1 when they were
considered useful for programming a PeSIT product destined to be
connected to the SIT network.

Non-SIT Profile :

The Non-SIT profile of the PeS IT protocol has seen the following
modifications compared to the version D of 15 november 1987 :

the password parameter (PI 5) has been enlarged from 2 to 16
bytes and may be modified dynamically,

the access type parameter (PI 22) can have the value 2 : mixed
access type,

the use of the eRe parameter (PI 1) has been added in the
FPDU.CONNECT to allow PeStT to be used with a PAD,

the file type and file name parameters (Pill and PI 12) contained in
the FPDU.SELECT and FPDU.ACK(SELECT) may be different thus
allowing generic selection,

the possibility of using PeSIT in a Store and Forward mode is
described and two parameters have been added : initial cailer
identification and final server identification (PI 61 and PI 62),

the length of the caller and server identification parameters
(PI 3 and PI 4) have been increased from 16 to 24 bytes,

the transfer identifier parameter becomes optional in the
FPDU.ACK(CREATE),

JULY 1989 PeSIT VERSON 1 CHAPTER 1 5

two parameters have been added key length (PI 38) and key offset
(PI 39) to allow the use of indexed file formats,

the alea and remainder parameters (PI 24 and PI 35) have been
deleted,

the length of the free text parameter (PI 99) has been increased to
254 bytes and becomes optional in the FPDU.ACK(CREATE),

the file Identifier parameter (PGI 9) has been added to the
FPDU.ACK(SELECT),

a datagram service has been introduced which uses some new FPDUs
(FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDU,MSGFM and
FPDU.ACK(MSG)) and a new parameter datagram,

the use of padding in the vertical compression algorithm is
clarified,

the behaviour of a file receiver during the transmission of an
FPDU.TRANS.END or an FPDU.ACK(TRANS,END) is clarified,

the version number (PI 6) should be used to differentiate between
versions of PeSIT Non-SIT in conformity with the version D and
versions corresponding with the version E.

Securise Non-SIT Profile :

This is a new profile. It requires the use of a special set of
parameters which have been introduced in the version E (parameters
PI 71 to PI 83).

ETEBAC 5 Profile :

This is a new profile. It has been defined in collaboration with the
ETEBAC 5 transport ans security work groups of the French CFONB
(French comittee for Bank Organisation and Standardisation) to
satisfy the file transfer requirements in conformity with the ETEBAC
5 standard (Data communication exchange protoool between Banks and
their Customers). ETEBAC 5 is described in a document produced by
the CFONB and available from the GSIT,

JULY 1989 PeSIT VERSKJN1 CHAPTER 2

CHAPTER 2

ARCHITECTURE and FUNCTIONAL DESCRIPTION

JULY 1989 PeSIT VERSION 1 CHAPTER 2 7

2 ARCHITECTURE and FUNCTIONAL DESCRIPTION

2.1 Reference model

Two important basic principles appear in the PeSIT protocol :

* A stable interface with the applications.

* A unique protocol regardless of the different communications layers used.

The dispersed evolution of processing centers has led to the definition of four
versions of PeSIT, which differ uniquely by their interface with the lower
communication layers used.

PeSIT-F relies on the standardised ISO Session layer for use with a packet
switching network (X-2S).

PeSIT-F' relies on the standardised ISO Network layer (CCITT X-2S
recommendation).

PeSIT -F" relies on the NETEX layer developped with the use of Hyperchannel.

PeSIT-F'" relies on the standardised ISO session layer for use with a local
area network in conformity with the ISO 8802-3 specification.

The diagram on the following page describes the logical architectural
environnement of PeS IT.

An application prepares and processes the transfered files.

A transfer monitor orders and controls the transfers.

A protocol machine (PeSIT) executes the intended dialogue.

Each element uses, directly or indirectly, the file control system.

Only the PeSIT protocol machine is described in this document.

JULY 1989 PeSIT VERSION 1 CHAPTER 2 8

PeSIT FUNCTIONAL ARCHITECTURE

.... • APPLICATION
F
C 1
S .. 7 ... MONITOR

8

Protocol Protocol Protocol Protocol r-
PeSIT F PeSIT F' PeSIT F" PeSIT F'" - 7

2

4 3 5 6

ISO SESSION ISO SESSION 5

ISO TRANSPORT TRANSPORT CL 4 4

NETEX 3

X25
ISO

8802.3 2

1

JULY 1989 PeSlT VERSKJN 1 CHAPTER 2 9

The diagram depicts :

1 Program interface between the application and the M.SIT monitor. This stable
interface is essential for the long term durability of the application software.

2 The PeSIT protocol which is detailed in the second part of this document.

3 The group of primitives between the ISO layer 3 and the protocol PeSIT-F' (section
4.3.2 of this document).

4 The group of primitives between the ISO layer 5 and the protocol PeSIT-F (section
4.3.1 of this document).

5 The group of primitives between the NETEX layer and the protocol PeSIT-F" (section
4.3.3 of this document).

6 The group of primitives between the ISO session layer and the protocol PeSIT -F'"
(section 4.3.4 of this document).

7 Accesses between the file transfer monitor (M.SIT) and the file control system
(OPEN FILE, READIWRITE, CLOSE FILE primitives).

8 Access primitives to the PeSIT service.

.'

JULY 1989 PeSIT VERSION 1 CHAPTER 2 10

2.2 Virtual file model

Existing file systems vary considerably in their implementations of file format
and file storage. It is thus necessary to create a common model of the file for use
by any protocol working in a heterogeneous network environnement. This model
is called the "virtual file". A virtual file enables the inner workings of a file
storage system specific to a particular operating system to be made transparent
to the protocol by means of conversion functions which map the local file
description into a standardized file description and vice-versa.

Although the object of a file transfer protocol is to transfer real files, the model
and the protocol are limited to the processing of virtual files. The
correspondance between real files and virtual files is considered to be dependant
on the local installation and as such it is not described in this document.

JULY 1989 PsSIT VERSION 1 CHAPTER 2 11

2.3 Functional description of the PeS IT Service and
protocol

2.3.1 PeS IT service functions

PeSIT provides the following functions:

•

•

•

•

•

•

•

writing of a distant file

reading a distant file

checkpointing during a transfer

resuming a interrupted transfer from a negotiated restart point

resynchronising during a transfer

suspension of a transfer

securitize a transfer

data compression

error control

datagram service

2.3.1.1 Write file

This function allows a user of the PeSIT service to
transfer the contents of a file to another user of the
PeSIT service. Prior to transfering the file the sender
must establish a logical link with his partner. The user
who establishes the connection is called the Caller, and
his correspondant is called the Server. In this example
the file data transfer is between the Catter/Sender and
the Server/Receiver.

2.3.1.2 Read file

This function allows a user of the PeSIT service to
request that another user of the PeSIT service transfer
the contents of a file to him. Prior to transfering the
file the receiving user must establish a logical link
with his partner. The user who establishes the
connection is called the Caller, and his correspondant
is called the Server. In this example the file data
transfer is between the Server/Sender and the
Caller/Receiver.

JULY 1989 PeSIT

2.3.1.3

2.3.1.4

2.3.1.5

2.3.1.6

VERSIOO 1 CHAPT=R2 12

Checkpointing

This function allows the sender to set milestones,
called checkpoints, which are numbered sequentially,
during the transfer. The receiver can acknowledge
these checkpoints, which signifies that he has received
and saved the data correctly up to that point. This
mechanism permits a transfer which is interrupted 10
be restarted at a position corresponding with one of the
acknowledged checkpoints or from the beginning of the
fil e.

Transfer recovery

This function allows a calling user to recover an
interrupted transfer. This recovery is possible for a
read or a write transfer, but can only be requested by
the caller. The data receiver determines the checkpoint
from which the transfer can be recovered ..

Restart during a transfer

This function allows a user, following a problem
during a file transfer, to request his partner to restart
the transfer from a previous checkpoint. The
difference between the recovery and the restart
services is that the recovery occurs after an
interrupted transfer (with subsequent closure and de
selection of the file) wheras the restart occurs during
the transfer and the file is still open and selected.

Transfer suspension

This function allows a user to interrupt a transfer
(which implies the closure and de-selection of the
associated file) so as to re-use the existing logical
connection for another transfer of a higher priority.
The suspended transfer will be recovered later by the
recovery procedure.

~ ---------------

JULY 1989 PeSIT

2.3.1.7

2.3.1.8

2.3.1.9

2.3.1.10

VERSION 1 CHAPTER 2 13

Transfer security

This function allows users of PeS IT to implement the
following security mechanisms:

• reciprocal authentication of the partners

• confidentiality of the transmitted data

• integrity of the transmitted data

• reciprocal non repudiation

Data compression

This function allows users to implement the data
compression mechanisms of PeSIT thus reducing the
quantity of data transmitted.

Error control

By using a polynomial error detection algorithm
applied to each PeSIT protocol message, this function
allows the detection of messages which have been
deteriorated by an unreliable transmission medium.

Datagram transfer

This function allows a user of the PeSIT service to
transfer a quantile of unstructured information to
another user of the PeSIT service. The transfer service
information overhead is kept to the minimum
necessary to identify the transfer, and thus with a
minimum of protocol exchanges. The synchronisation,
compression, restart, resynchronisation and
suspension services are therefore not available for
this type of transfer.
However certain security functions may still be used:

* integrity of the transmitted data

* reciprocal non repudiation

JULY 1989 PeSIT VERSION 1 CHAPTER 2 14

2.3.2 Functional unit concept

The implemention of all the functions described above is not always
necessary to satisfy the needs of a PeSIT service user. Thus certain
functions can be omitted in certain implementations of the protocol.
To standardize the functions which can be omitted the functions are
organized into functional units:

The functional units are:

Kernel : the kernel contains all the services necessary for the
establishment and the termination of a logical link between two users
of the PeSIT service (PeSIT connection).

Write : this functional unit contains all the services necessary to
write a distant file.

Read: this functional unit contains all the services necessary to read
a distant file.

Checkpointing : the checkpointing functional unit contains the
services which allow checkpoints to be set during a transfer.

Restarting : the restarting functional unit contains the services
which allow the restarting during a transfer.

Suspension : this functional unit contains all the services which
allow the suspension of a transfer. I.e. which allow the interruption of
a transfer so as to reuse the logical connection for a transfer of a
higher priority.

Datagram : the datagram functional unit contains all the services
necessary to provide the datagram service.

Error control : the error control functional unit does not contain
any specific services but implies that the error detection mechanism
be used by the protocol for all the messages sent or received. The user
indicates that this functional unit should be activated by means of a
parameter in the service primitive which requests the connection
with the distant user.

Security : the security functional unit does not contain any specific
services but implies that the security mechanisms (in particular the
algorithms) have been implemented in the protocol. It also requires
parameters to be exchanged between the user and the PeSIT service
provider during the different service phases.

JULY 1989 PeSIT VERSION 1 CHAPTER 2 15

2.3.3 Profile concept

The use of the PeSIT protocol by a group of users or for a particular
application can call for a choice of a certain number of functional
units to be implemented, of parameters to be used and of their values.
These choices constitute a usage profile for the protocol.

Actually four PeSIT usage profiles have been defined:

the SIT profile

• the Non-SIT profile

the Secure Non-SIT profile

• the ETEBAC 5 profile

They are differentiated by :

the fUnctional units used,

the optional parameters used,

the limit values authorised for certain parameters,

the addressing conventions (such as caller and server
identification) and file naming conventions (types and names of
files).

JULY 1989 PeSIT VERSION 1 CHAPTER 3 1 6

CHAPTER 3

PeSIT SERVICE DESCRIPTION

JULY 1989 PeSIT VERSION 1 CHAPTER 3 1 7

3 PeS IT SERVICE DESCRIPTION

3.1 INTRODUCTION TO THE SERVICE

3.1.1 Scope

The service model describes the interactions between the user
service entities (the applications) and the service provider entity
(the protocol layer). Information is transfered between the service
user and the service provider by means of service primitives
which may contain parameters.

3.1.2 Partner roles

During a PeSIT session1 between two users of PeS IT, the dialogue is
always asymmetric, i.e. the two partners fulfil different and
complementary roles. The session originator, named the CALLER, is
the partner who determines the work to be done during the session
and is in the closest contact with the user whose requests are
serviced. The other PeS IT user, named the SERVER, executes the
work proposed by the caller and supplies a report on the work
carried out.

3.2 REGIMES OF THE FILE SERVICE

The PeSIT protocol only allows one file to be transfered at a time during a
particular session_ Several files can be transfered in parallel if several sessions
are open.

The work carried out during a PeSIT session can be structured dynamically into
a series of regimes within each other which must be opened in a hierarchical
order and closed in the reverse order. If the session is interrupted or
discontinued prematurely by a user, all the regimes which are still active are
considered to have been implicitly closed.

These regimes fit together as shown in the following schema: a regime defines a
step in the transfer process, within which a certain set of services may be used
while others are prohibited. To exit a regime, the regimes nested within it must
first have been closed.

1 A session is defined as "a logical link established between two
distant PeSIT protocols by means of a communication system"

JULY 1989 PeSIT VERSION 1

SERVICE REGIMES

PeSIT regime
FILE SELECTION regime

FILE OPEN regime

[
DATA TRANSFER regime

END DATA TRANSFER

FILE CLOSE

END OF Pesit regime

FILE SELECTION regime

FILE OPEN regime

[
DATA TRANSFER regime

END DATA TRANSFER

FILE CLOSE

FILE DESELECT

END OF Pesit regime

CHAPlER3

TRANSFER
File 1

TRANSFER
File n

18

JULY 1989 PeS IT VERSION 1 CHAPTER 3 1 9

The description of the different regimes is as follows, in hierarchical order
starting from the outermost layer :

PeSIT regime

Exists between the opening and the closing of the session; this regime creates the
logical link between two conversing users using a PeSIT session.

FILE SELECTION Regime

A file is reserved for the data transfer (between the SELECTION/CREATION and
the DESELECTION of the file). A PeS IT regime may contain zero or more FILE
SELECTION regimes.

FILE OPEN Regime

The current file is ready for data transfer (between the opening and the closing
of Ihe file).

DATA TRANSFER Regime

The file data is transmitted (between the beginning and the end of the transfer).
In a data transfer regime, the PeSIT users adopt the roles of SENDER and
RECEIVER.

3.3 SERVICES OF THE PeSIT FILE SERVICE

The different services which make up the PeS IT service, classified by regime,
are as follows :

PeSIT Regime

PeSIT regime establishment service

PeSIT regime termination service

PeSIT regime user abort service

PeSIT regime provider abort service

FILE SELECTION Regime

File creation service

File selection service

File deselection service

Datagram service

FILE OPEN Regime

File open service

JULY 1989 PeS IT VERSION 1 CHAPTER 3 20

File close service

DATA TRANSFER Regime

Write bulk data file service

Read bulk data file service

Data unit transfer service

Checkpointing service

End of data transfer service

End of transfer service

Cancel data transfer service

Restarting transfer service

3.4 FUNCTIONAL UNITS

The different services are organised into functional units. The functional units
and the services that they require are as follows:

Kernel

The services associated with this functional unit are:

PeSIT regime establishment service

PeSIT regime termination service

PeSIT regime user abort service

PeS IT regime provider abort service

Wri te

The services associated with this functional unit are:

File creation service

File deselection service

File open service

File close service

Write bulk data file service

Data unit transfer service

End of data transfer service

JULY 1989 PeSIT

End of transfer service

Read

VERSION 1 CHAPTER 3

The services associated with this functional unit are:

File selection service

File deselection service

File open service

File close service

Read bulk data file service

Data unit transfer service

End of data transfer service

End of transfer service

Checkpointing

The service associated with this functional unit is :

Checkpointing service

Restarting

The service associated with this functional unit is :

Restarting transfer service

Suspension

The service associated with this functional unit is :

Cancel data transfer service

Datagram

The service associated with this functional unit is :

datagram service

Security

This functional unit does not require any particular services.

Error control

This fUnctional unit does not require any particular services.

21

JULY 1989 PeS IT VERSION 1 CHAPlER3 22

3.5 DEFINITION OF A PROFILE

A profile is differentiated by :

the functional units used,

the optional parameters used by the service primitives and therefore by the
protocol elements,

the limit values authorised for certain parameters,

addressing conventions (such as caller and server identification) and file
naming conventions (types and names of files).

The fUnctional units necessary for each profile are described in paragraph 3.8
which also indicates the particular choice of parameters for each profile.

The format of each parameter and of each protocol element of the PeSIT protocol
is detailed in chapter 4, profile by profile.

However for the description of the PeS IT service primitives given in paragraphs
3.6 and 3.7 we have preferred not to distinguish the different profiles,
mentioning only which parameters are optional. Obviously parameters that are
optional in a general description may become either mandatory or prohibited in
a particular profile; the detail is given in chapter 4.

To enable the Security functional unit, whose transfers require a global
understanding and whose implementation is specific to certain usages, to be
isolated from the rest of the description we have volontarily omitted all the
parameters related to this functional unit in the general description of the
service primitives (paragraph 3.6) and of the parameters (paragraph 3.7).

The description of the service primitives and their parameters used by the
Security functional unit (specific to the Secure Non-SIT and ETEBAC5 profiles)
are in paragraph 3.9 : PeSIT SECURITY SERVICE.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 23

3.6 DESCRIPTION OF THE SERVICE PRIMITIVES

3.6.1 Correspondance between service and primitives

The following table shows the correspondance between the services
and the primitives.

Service primitive Confirmation Originator Service name

F.CONNECT YES Caller PeSIT regime establishment

F.RElEASE YES Caller PeSIT regime termination

F.ABORT to Caller/Server User/provider abort

F.CREATE YES Caller File creation

F.SELECT YES Caller File selection

F.DESELECT YES Caller File deselection

F.OPEN YES Caller File open

F.GLOSE YES Caller File close

FWRITE YES Caller Write bulk data

F.READ YES Caller Read bulk data

F.DATA to Sender Data unit transfer

F.DATA-END to Sender End of data transfer

F.TRANSFER-END YES Caller End of transfer

F.CANCEL YES Caller/Server Cancel data transfer

F.CHECK YES Sender Checkpointing

F.RESTART YES Sender/Receiver Restarting transfer

F.MESSAGE YES Caller Datagram

JULY 1989 PeSIT VERSION 1 CHAPlER3 24

3.6,2 Conventions

USER A

request
confirmation

request

The SERVICE concept is an abstract notion which defines the
interactions between the PeSIT protocol layer and the user at either
end of the logical link. It is defined by a number of service
PRIMITIVES.

Four types of primitives exist :

the request primitive: a user invokes the corresponding service,

the indication primitive : a user is informed, by the service
provider, that a service request has been received,

the response primitive : a user responds to a corresponding service
indication,

the confirmation primitive : a user is informed by the service
provider, that a response has been received.

Each elementary service is made up of a combination of primitives as
the figures below illustrates :

SERVICE WITH CONFIRMATION

PeSIT PROTOCOL

SERVICE WITHOUT CONFIRMATION

I~
Each service element is defined by :

its function,

the associated parameter table.

..

USERB

indication
response

indication

For each parameter, a "+" in the corresponding column indicates that
the parameter may be used in the corresponding primitive.

The parameters are described in paragraph 3.7,

In the parameter table, a number in brackets, next to a parameter,
e,g. "(§i)" indicates the sub-paragraph of paragraph 3.7 which
describes the parameter.

JULY 1989 PeSIT VERSION 1 CHAPlER3 25

3.6.3 Description of the primitives

a) F.CONNECT Service

(§ a)
(§ b)
(§c)
(§ c)
(§ d)
(§e)
(§ f)
(§q)
(§ r)
(§ I)

(§w)

(§ab)

* Function
This service element allows a logical link to be set up between two
PeSIT service users. The user who initiates the F.CONNECT request
primitive becomes the caller and the user who receives the
F.CONNECT indication primitive becomes the server. The caller is
responsable for the connection until it is cleared-down. If the
connection cannot be established then a diagnostic code informs the
caller of the reason.

During the connection establishment phase certain options (use of
functional units) are negotiated. This negotiation covers:

- the access type "read", "write" or "read/write" (Read and Write
functional units),

- the checkpoint option (Checkpointing functional unit),

- the restarting (whether the Restarting data transfer functional
unit will be used),

- use of a polynomial error detector (Error Control functional unit).

The Caller indicates the functional units that he can support in the
F.CONNECT request and the server replies with the intersection
between these functions and his own capacities in the F.CONNECT
response. The version of the protocol to be used is also negotiated at
this stage.

• Parameter table

PARAMETER F.CQN\IECT F.CQN\IECT
request/indication response/confirmation

CRCUsage +
Diagnostics +
Caller identification +
Server identification +
Access control + +
Version number + +
Option: checkpoint + +
Access type +
Restarting + +
Protocol monitoring time-out +
(oplional)
Diagnostic complements +
(op1ional)
Free text (optional) + +

JULY 1989 PeSIT VERSION 1 CHAPTER 3 26

b) F.RELEASE Service

* Function

This service element allows a logical link between two PeSIT service
users to be cleared down. Only the calling user may initiate the
F.RELEASE request primitive during the connection as long as a file is
not selected.

• Parameter table

PARAMETER F.RELEASE F.RELEASE
requestlindication re s pon sel co n Ii rm a tion

(§b) Diagnostics +
(§w) Diagnostic complements +

(optional)
(§ab) Free text (optional) + +

c) F.ABORT Service

• Function

This service element allows a logical link between two PeSIT service
users to be brutally and unconditional cleared down while
abandonning any current activity.

Once an F .ABORT service element has been initiated or received any
transfer regime which is open should be closed.

Either the caller or the server may initiate the F .ABORT request
primitive at any time during a connection.

The F .ABORT service is not confirmed.

* Parameter table

PARAMETER FABORT
request/indication

(§b) Diagnostics +
(§w) Diagnostic complements +

(optional)

JULY 1989 PeSIT VERSION 1 CHAPTER 3 27

d) F.CREATE Service

• Function

This service element allows a new file to be created and to select it to
receive a file to be transfered (write transfer).

Only the calling user may initiate the F.CREATE request primitive and
only during the connection regime, as long as the access type selected
during the connection was "write" or "read/write".

The server user upon receiving an F.CREATE indication creates the
file and selects it prior to responding with an F.CREATE response
primitive. If the create fails the F.CREATE response primitive is
negative and the diagnostic parameter indicates the reason for the
failure.

Maximum size of a data unit

During the file selection regime the maximum size of a data unit is
negotiated and the resulting value is passed on to the communication
layer:

- the caller proposes the size that he wishes to use in the F.CREATE
request primitive,

- the server replies in the F.CREATE response primitive with the
maximum size accepted, which should be less than or equal to the
requested size.

Within the limit of this maximum size it is possible to concatenate
several FPDUs into a single data unit passed on to the communication
layer. The concatenation rules are given in paragraph 4.5.

It should be noted that if the Segmentation functional unit is not used
then the maximum data unit size must be greater than or equal to the
sum of the maximum article size of the file to be transfered and the
FPDU header (six bytes).

Transfer identifier

The transfer identifier parameter in the F.CREATE request primitive
should be set to a non zero value by the caller if the transfer is new
(not recovered). The server may provide a different (non zero)
transfer identifier in the F.CREATE response primitive. The use of
the transfer identifier parameter in the F.CREATE response
primitive is not fixed. If the transfer is recovered then the caller
indicates the same transfer identifier in the F.CREATE request
primitive as he originally used in the first attempt.

JULY 1989

(§bl
(§g I
(§ h!
(§ j I
(§ kl
(§ I I
(§s I
(§ wi

(§x)
(§ y)
(§ y)
(§z!
(§aa)

(§ab)

PeSIT VERSION 1 CHAPTER 3 28

Transfer recovery

The recovery facility is intended to avoid resuming a transfer which
was suspended or cancelled prior to the end of the deselection regime,
from the beginning. The recovery may occur during the same
connection or at a later moment. In either case the file whose transfer
is to be recovered may be selected and reopened with the same
parameters as in the original transfer. The recovered transfer
parameter, in the F.CREATE service, indicates if the transfer is new
or a recovered transfer. For a write transfer, the point of recovery
is negotiated by the F.WRITE service.

• Parameter table

PARAMETER F.CREATE F.CREATE
reque st/indication response/confirmation

Diagnostics +
File identifier + +
Transfer identifier + +
Recovered transfer +
Data coding +
Transfer priority +
Maximum size of a data unit + +
Diagnostic complements +
(optional)
File attributes +
Customer identifier (optional) +
Bank identifier (optional) +
File access control (optional) +
Server Date and time +
(optional)
Free text (optional) +

0) F.SELECT Service

• Function

This service element allows an existing distant file to be selected for
reading (read transfer).

Only the calling user may initiate the F .SELECT request primitive and
only during the connection regime, as long as the access type selected
during the connection was "read" or "read/write".

JULY 1989 PeSIT VERSION 1 CHAPTER 3 29

Transfer recovery

In the same way as a write transfer, a read transfer may be
recovered. The recovery facility is intended to avoid resuming a
transfer which was suspended or interrupted prior to the end of the
deselection regime from the beginning. The recovery may occur
during the same connection or at a later moment. In either case the
file whose transfer is to be recovered may be selected and reopened
with the same parameters as in the original transfer. The recovered
transfer parameter, in the F.SELECT service, indicates if the
transfer is new or a recovered transfer. For a read transfer, the
point of recovery is negotiated by the F.REAO service.

File Identifier

In the F .SELECT request primitive, the file name parameter may be
either the real file name or a wild card file description which allows
the server to search for a generic file name which satisfies various
parameters (e.g. version number, creation date). Even the file type
parameter, in the F.SELECT request primitive, may indicate either a
precise file type or a generic file type. When generic parameters are
used the server should indicate in the F.SELECT response primitive
either that no file satisfied the selection criteria supplied by the
caller or the complete name of the file selected.

It should be noted that for generic requests, each transfer concerns
only one unambiguously identified file (for the partners and dates
provided) identified by the file type and name parameters given in
the F.SELECT response primitive. Consequently, the file type and
name parameters will be different in the request primitive and In the
response primitive.

Transfer Identifier

The transfer identifier parameter in the F.SELECT request primitive
should be set to zero by the caller if the transfer is new (not
recovered). The server will provide a (non zero) transfer identifier
in the F .SELECT response primitive. If the transfer is recovered then
the caller indicates the same transfer identifier in the F.SELECT
request primitive as was originally provided by the server during
the first attempt.

JULY 1989 PeS1T VERSIOO 1 CHAPTER 3 30

• Parameter table

PARAMETER F.SELECT F.sELECT
requ est/indication response/confirmation

(§ b) Diagnostics +
(§g) File identifier + +
(§ h) Transfer identifier + +
(§ i) Requested attributes +
(§ j) Recovered transfer +
(§ k) Data coding +
(§ I) Transfer priority +
(§ s) Maximum size of a data unit + +
(§w) Diagnostic complements +

(optional)
(§ x) File attributes +
(§ y) Customer identifier (optional) +
(§ y) Bank identifier (optional) +
(§ z) File access control (optional) +
(§aa) Server Date and time +

(optional)
(§ab) Free text (optional) +

f) F.OPEN Service

• Function

This service element allows a file to be open.

Only the calling user may initiate the F .OPEN request primitive after
selecting the file. The server user upon receiving an F .OPEN
indication primitive should open the file which was previously
selected prior to responding with an F .OPEN response primitive.

The data presentation is negotiated during this phase. The possible
options are :

* compression

The caller indicates in the F.OPEN request primitive whether he
wishes to use data compression and the algorithm to be used for the
current transfer. The server replies indicating in the F.OPEN
response primitive whether he can provide the compression facility
and the algorithm requested. The details of the compression
algorithms and the rules of negotiation of these algorithms are given
in Annexe A.

JULY 1989 PeSIT VERSION 1 CHAPlER3 31

• Parameter table

PARAMETER F.OPEN F.OPN
request/indication response/conti rmation

(§b) Diagnostics +
(§p) Compression + +
(§w) Diagnostic complements +

(optional)

g) F.CLOSE Service

• Function

This service element allows a file which was previously open to be
closed. Once this service element has been initiated or received, no
other service element may be initiated prior to receiving the F .CLOSE
response. A request to close a file may not be refused.

Only the calling user may initiate the F.CLOSE request primitive.
Upon receiving the F.CLOSE indication primitive, the server user
should stop any actions under way and close the tile prior to
responding with an F.CLOSE response primitive.

• Parameter table

PARAMETER F.CLOSE F.Cl.OSE
request/indication response/conti rmation

(§b) Diagnostics + +
(§w) Diagnostic complements + +

(optional)

h) F.DESELECT Service

• Function

This service element trees up the association between the caller and
the selected file. A deselect may not be refused.

Only the calling user may initiate the F.DESELECT request primitive
upon a previously selected file. Upon receiving the F.DESELECT
indication primitive, the server user should free up the current file
prior to responding with an F.DESELECT response primitive.
Following a deselect, the file is preserved and may be re-selected.

JULY 1989

(§b)
(§w)

PeSIT VERSION 1 CHAPTER 3 32

• Parameter table

PARAMETER F.DESELECT F.DESELECT
requ est/indication re s po n set con fi rm ation

Diagnostics + +
Diagnostic complements + +

(optional)

i) F.READ Service

• Function

This service element allows a read data transfer to be initiated on a
file from a particular point (start of the file or a recovery point).
The F.READ service may only be initiated by the calling user
following a select and file open regime. F .READ implies that the file
data will be transfered from the server user to the calling user.

Recovery point negotiation

During this phase the recovery point is negotiated if the F.SELECT
service requests that this transfer be recovered. The recovery point
is determined by the file receiver who knows how much data has been
correctly received. The recovery point parameter is in the F.READ
request primitive. It should be either zero (recovery from the
beginning of the file) or greater than or equal to the last checkpoint
acknowledged by the calling receiver. The data sender therefore need
keep only the context related to the checkpoints which have not been
acknowledged. The server sender may indicate in the F.READ response
primitive (diagnostic parameter) that he is unable to recover the
transfer from the recovery point requested by the caller.

• Parameter table

PARAMETER FHEAD F.READ
request/indication response/con firmation

(§b) Diagnostics +
(§m) Restart point +
(§w) Diagnostic complements +

(optional)

JULY 1989

(§ b)
(§ m)
(§w)

PeS1T VERSION 1 CHAPTER 3 33

j) F.WRITE Service

• Function

This service element allows a write data transfer to be initiated on a
file from a particular point (start of the file or a recovery point).
The F.WRITE service may only be initiated by the calling user
following a select and file creation regime. F,WRITE implies that the
file data will be transfered from the calling user to the server user.

Recovery point negotiation

During this phase the recovery point is negotiated if the F.CREATE
service requests that this transfer be recovered. The recovery point
is determined by the file receiver who knows how much data has been
correctly received. The recovery point parameter is in the F.WRITE
response primitive, It should be either zero (recovery from the
beginning of the file) or greater than or equal to the last checkpoint
acknowledged by the server receiver. The data sender therefore need
keep only the context related to the checkpoints which have not been
acknowledged.

• Parameter table

PARAMETER F.wRITE F.wRITE
request/indication response/con firmation

Diagnostics +
Recovery point +
Diagnostic complements +
(optional)

k) F.DATA Service

• Function

This service element allows a file data article to be transfered from
the sender to the receiver.

Only the sender user (who may be the caller or the server depending
on the initialization of F.READ or F.WRITE) may initialize the F.DATA
resquest primitive.

F.DATA is not acknowledged.

• Parameter table

PARAMETER F.DATA
request/indication

(§ac) File article +

JULY 1989 PoSIT VERSION 1 CHAPTER 3 34

I) F.DATA.END Service

• Function

This service element flags the end of data transfer. It is initiated only
when all the fife data has been transfered.

Only the sender user may initialise the F.DATA.END request
primitive.

F.DATA.END is n01 acknowledged.

• Parameter table

PARAMETER F.DATA.END
request/indication

(§b) Diagnoslics +
(§w) Diagnostic complements +

(op1ional)

m) F.TRANSFER.END Service

• Function

This service element flags the end of the data transfer regime.

Only the calling user may initialise the F.TRANSFER.END request
primitive.

Note

When the caller is sender, this request follows the F.DATA.END
primitive, and the response. returned by the server, is an implicit
acknowledgement of all the checkpoints. Specifically this primitive
indicates that all the data have been received and written to file by the
server.

For a caller receiver. the request is sent after the F.DATA.END has
been received and constitutes an acknowledgement of all the
checkpoints. Specifically this primitive indicates that aU the data
have been received and written to fite by the caller.

JULY 1989 PeSIT VERSION 1 CHAPlER3 35

• Parameter table

PARAMETER F.TRANSFER.END F.TRANSFER.ENDA
requ est/indication r espo n selcon fi r m atio n

(§ b) Diagnostics +
(§ u) Number of data bytes (optional + +
(§ v) Number of articles (optional) + +
(§ w) Diagnostic complements +

(§ b)
(§ n)
(§w)

(optional)

n) F.CANCEL Service

• Function

This service element allows a data transmission to be interrupted
during the transfer regime.

Either the caller user or the server user may initiate the F.CANCEL
request primitive.

• Parameter table

PARAMETER F.CANCEL F.CANCEL
request/indication re spa n selco n firm a tio n

Diagnostics +
End of transfer code +
Diagnostic complements +
(optional)

0) F.CHECK Service

* Function
This service element allows checkpoints to be set on the data
transferred. Only the sender user may initiate the F .CHECK request
primitive during the data transfer regime. It can only be used if the
Checkpointing functional unit was accepted during the connection
regime.

During the connection negotiations the maximum number of bytes
which may be transmitted between two F.CHECK services is
determined as well as the rules for confirmation of the service.

The F .CHECK service is not acknowledged if, during the negotiations
on the use of the Checkpointing functional unit, the window was set to
zero. Otherwise the window determines the number of F .CHECK
service primitives which may be issued successively without waiting
for the reception of a confirmation primitive.

JULY 1989 PeSlT VERSIOfII1 CHAPTER 3 36

Each F.CHECK primitive need not be confirmed individually as the
confirmation of a checkpoint implicitly confirms all the previous
non-confirmed checkpOints.

Prior to sending an F.CHECK response primitive the receiver must
flush write all the data received to file .

• Parameter table

PARAMETER F.CHECK F.CHECK
request/indication response/con firmation

(§o) Checkpoint number + +

p) F.RESTART Service

• Function

This service element allows a transfer to be restarted from a
previous checkpoint. It can only be used if the Checkpointing and
Restarting functional units have been selected during the connection
regime. Either the caller or the sender may initiate the F.RESTART
request primitive during the data transfer regime. Following
acceptance by the partner of the restart point, the data transfer
continues from this point without leaving the data transfer regime.

Restart point negotiation

The restart may be either from the beginning of the file (restart
point 0) or from any of the checkpoints prior or equal to the last
acknowledged checkpoint. The restart point to be used is determined
by negotiation between the F.RESTART request and response
primitives. It is always the receiver who determines the restart
point.
The receiver who requests a restart should indicate the requested
restart point in the F.RESTART request primitive (above or equal to
the last confirmed checkpoint) and the sender may either accept to
continue from this point (F.RESTART response primitive with the
same restart point as requested in the F.RESTART request primitive)
or impose a restart from the beginning of the file (F .RESTART
response primitive with a zero restart point).

The sender who requests a restart should indicate the requested
restart point in the F.RESTART request primitive (above or equal to
the last received checkpoint confirmation) and the receiver may
either accept to continue from this point or from a later point
(F .RESTART response primitive with a restart point greater than or
equal to the restart point requested in the F.RESTART request
primitive) or impose a restart from the beginning of the file
(F. RESTART response primitive with a zero restart point).

Note

The restart point is conveyed by the recovery point parameter.

JULY 1989

(§ b)
(§ m)
(§ w)

(§ b)
(§g)
(§ h)
(§ i)
(§ k)
(§ w)

(§ x)
(§ y)
(§ y)

PeSIT VERSION 1 CHAPTER 3 37

• Parameter table

PARAMETER F.RESTART F.RESTART
request/indication response/con firmation

Diagnostics +
Recovery point + +
Diagnostic complements +
(optional)

q) F.MESSAGE Service

• Function

This service element allows a user of the PeS IT service to send a
quantity of unstructured information to another user of the PeSIT
service. Only the calling user may initiate the F .MESSAGE request
primitive during the connection regime.

The F.MESSAGE service is acknowledged.

• Parameter table

PARAMETER F.MESSAGE F.MESSAGE
requ est/indication response/confirmation

Diagnostics +
File identifier +
Transfer identifier + +
Requested attributes +
Data coding + +
Diagnostic complements +
(optional)
File attributes +
Customer identifier (optional) +
Bank ·Identifier (optional) +

(§ad) Dalagram (optional) +

JULY 1989 PeSIT VERSION 1 CHAPTER 3 38

3.7 DESCRIPTION OF THE PARAMETERS

aJ CRC Usage

This parameter indicates if a polynomial error detection checksum (eRe) is
added to each FPDU to check the validity of these messages (see §4.3.2). This
parameter is mandatory for use of the protocol with a PAD.

b) Diagnostics

This parameter indicates the gravity and the type of error encountered. It is
made up of two fields :

- error type which indicates the gravity of the error,
- diagnostic code which gives the detail of the type of error.

The list of the diagnostics is given in Annexe D and shows within which service
primitives they may occur.

c] Caller and server identification

This parameter specifies the name of the caller and server users.

d) Access control

The access key allows reciprocal identification of the caller and the server
(password). If a user wishes to modify his password, the new one is pul in the
access control parameter after the password which is to be replaced.

e) Version number

Version number of the software. If an incompatibility exists between the version
indicated in the F.CONNECT request primitive and the version supported by the
server then the server may refuse the connection. The server may also suggest a
previous version of the protocol in the F.CONNECT response primitive in which
case the caller may either close down the logical link or accept the version
suggested by the server.
Version number 1 corresponds with the protocol described in the version D of
the PeSIT technical specifications dated 15 November 1987.
Version number 2 corresponds with the protocol described in the current
version E of the PeSIT technical specifications dated 14 July 1989.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 39

f) Option checkpointing

This parameter allows the Checkpointing functional unit to be negotiated.

* interval between two checkpoints :

• 0 in this field indicates: no checkpoints,

• 65535 in this field indicates : undefined interval

• any other value indicates the maximum number of bytes of the file (expressed
in kilo*bytes, 1 kilo*byte :: 1024 bytes) that the sender may transmit
between two consecutive checkpoints. This value includes only the data fields of
the FPDU.DTF (not counting the header) and excluding the article length fields of
multi*article FPDUs. However if compression is used then the data is counted
after compression and includes the compression headers (if present).

window:

.. 0 in this field indicates: no acknowledgement of checkpoints required,

.. a non zero value defines the size of the window for acknowledging checkpoints.
The window defines the greatest difference allowed between:

the number of the last checkpoint transmitted,

and, the number of the last checkpoint acknowledged.

Once the window is full, data transmission is suspended until a checkpoint
confirmation is received. When the window is larger than one, each checkpoint
need not be explicitly acknowledged, as a confirmation implicitly acknowledges
all the previous checkpoints.

Negotiation of the checkpoint option

The negotiation takes place during the connection regime. The caller proposes the
values that he wishes to use, and the server replies with the negotiated values
using the following rules:

* if both parties wish to use checkpoints then the option is selected. Otherwise
the option is refused.

* if the option is selected, the server may decide on values for the checkpointing
interval and the window which are less than or equal to those suggested by the
caller.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 40

g) File Identifier

This parameter is exchanged between the caller and the server during the file
selection phase and makes up the file identification. A non-ambiguous file
identification may require other parameters depending on the profile used: see
§3.8.

The file identifier is composed of :

- caller identification: optional parameter, if absent the previous known value
is taken from either the connection regime or the last selection regime in which
it was given. If present, its value may be different from the value given during
the connection regime or by a preceding selection regime in which case the new
value is adopted until the connection is cleared-down or a different value is
given in a succeding file selection regime.

- server identification: optional parameter, its use is governed by the same
rules as the caller identification.

- file type : this parameter defines the file class type : its use is determined by
each particular profile.

- file name : this parameter allows the correct identification of a file within
the file type.

For a read transfer the file type and file name parameters may be of a generic
form in the F .SELECT request primitive specifying a group of files. In this case
the file type and file name parameters returned in the F .SELECT response
primitive will be different and will describe a single file out of the generic
group description. If the server does not find any files corresponding with the
generic description then the F .SELECT response primitive will be negative.

h) Transfer identifier

This parameter has a numeric value which allows the transfer to be identified.
For a recovered transfer the transfer identifier should be identical to that used
during the initial transfer.

For a write operation the transfer identifier is chosen by the caller (non zero
value in the F.CREATE request primitive).

For a read operation the transfer identifier is chosen by the server. The caller
should set a zero transfer identifier (except for a recovery) in the F.SELECT
request primitive. The server will determine the value of the transfer identifier
(non-zero) in the F.SELECT response primitive. For a recovered read operation
the caller puts the same transfer identifier as was chosen by the server during
the initial transfer in the transfer identifier field and the server should
response with the same value.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 41

i) Requested attributes

Indicates the file attributes which should be included in the response to a caller.
They are made up of any combination (even nUl) of the following categories
logical, physical and historical.

j) Recovered transfer

This parameter indicates that the transfer is a retry of a previous unfinished
transfer. The recovery is always initiated by the caller however it is the
receiver who determines from which recovery point the transfer will be
continued.

k) Data coding

This parameter indicates the type of coding used for the data in the file to be
transfered. The possible values are : Mbinary" (transparent transmission),
"ASCII" or "EBCDIC".

I) Transfer priority

This parameter determines the relative priority given to a transfer by the
caller.

m) Recovery point

This is the checkpoint number which allows a recovery or a restart to take place
from a particular point in a file. The value is determined by the receiver, in an
F.WRITE response primitive for a write operation and in an F.READ request
primitive for a read operation. A zero value is used to indicate the beginning of
the file.

n) End of transfer code

This code gives the reason for terminating data transfer in an F .CANCEL
primitive. The possible values are:

· Error
· Suspension
· Cancellation by the server
- Cancellation by the caller

0) Checkpoint number

A numeric value which identifies a checkpoint un-ambiguously. It is
incremented by one at each successive F.CHECK primitive, starting from 1 for
the first checkpoint. The maximum value is 999 999.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 42

p) Compression

This parameter allows the use of compression during the transmission of file
data to be negotiated during the open regime. The possible types of compression
are:

horizontal compression,
vertical compression,
both.

The details of the negotiation mechanisms and the compression algorithms are
given in Annexe A.

q) Access type

Indicates the type of access allowed during the transfer viz: "Read, Write or
Read/Write".

Read: when the caller is sender.

Write : when the server is sender.

Read/Write : used when both send and receive transfers may occur in the
same connection.

r) Restarting

This parameter is used to negotiate the Restarting funotional unit during the
connection regime (use of the F.RESTART service).

s) Maximum size of a data element

This parameter specifies the maximum number of bytes that may be transported
in a data unit (NSDU, SSDU, ...). Its value is negotiated during the file selection
regime. The caller proposes a maximum value and the server replies with a
value which is less than or equal to this value. The values selected for the
maximum data element size and maximum article size determine the use of the
segmentation, concatenation and multi-article FPDU mechanisms.

t) Protocol monitoring time-out

This parameter allows the value of the protocol monitoring time-out to be used
for a connection to be negotiated during the connection regime.

u) Number of data bytes

This parameter gives the total number of bytes (less the length fields for mUlti
arUcle FPDUs but including compression string headers) which were
transmitted or received during the transfer regime of a file. It is used by the
F.TRANSFER.END service primitives as a check value.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 43

v) Number of articles

This parameter gives the number of articles transmitted or received for a file
during the file transfer regime. It is used by the F.TRANSFER.END service
primitives as a check value.

w) Diagnostic complements

This parameter contains complementary information following a refusal
diagnostic (explanation of a format error, call back time, backup number, etc.).

x} File attributes

This parameter contains the characteristic parameters of a file. There are three
type of file attributes : logical, physical and historical.

• logical attributes

These are the characteristics which allow access to the file:

- article format:
specifies the format of the articles in the file. The permitted values are: fixed
or variable.

- article length:
specifies the length in bytes of an article in the file. It is the exact length for a
fixed format file and a maximum length for a variable format file.

- file organisation:
describes the organisation of the data within the file and thus the access method
to be used for the file transfer. The possible values are: sequential, relative or
indexed.

- digital signature usage:
determines whether the file is covered by a SIT MAC.

- SIT MAC;
present for files transmitted by a SIT station towards a Bank Processing Center.

- file label;
may be used to associate a symbolic name with a file.

- key length;
contains the key length in bytes for an indexed file format.

- key offset:
contains the offset of the key relative to the beginning of an article for an
indexed file format.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 44

* physical attributes

These are the physical characteristics of the file:

- storage reservation unit:
defines the unit used when reserving space for a file. The units possible afe :
kilo-bytes or articles.

note:
Units will be used in the following way:

· kilo· bytes for flies with variable length articles.

· articles or kilo-bytes for files with fixed length articles.

- maximum reserved space:
defines the maximum size that the file may not exceed.

• historical attributes

These parameters characterise the past history of the file

- date and time of creation:

- date and time of last access:
the date when the last transfer was completed whether normally or following an
interruption.

y) Customer and bank identifiers

This parameter contains the identification of the client or the bank for whom the
transfer was performed.

z) File access control

Access key allowing the client to be identified by the bank. This password is
exchanged during the selection regime and is thus associated with the file. If a
user wishes to modify his password, the new one is put in the file access control
parameter after the password which is to be replaced.

aa) Server date and time

This parameter contains the date and time as known by the server when the file
was selected.

ab) Free text

This parameter allows a message (string of ASCII characters) to be passed from
one service user to another during the execution of one of the transfer regimes.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 45

ae) File article

This parameter contains the data of a file article. The correspondance between an
article in the virtual file and the record in the real file is the responsability of
the local installation.

ad} Datagram

This parameter allows a message to be passed from one service user to another
using the specific datagram service.

3.8 PROFILE DESCRIPTIONS

3.B.1 SIT profile

The SIT profile is specified by :

.. the functional units :

Kernel
Write
Checkpointing

.. the limit values of certain parameters :

Option - checkpointing : the interval between two checkpoints should
be greater than or equal to 4 kilo-bytes, the window less than or
equal to 16.

Maximum size of a data element : must be greater than or equal to
BOO by1es .

.. a specific address system :

the caller and server identifiers are the installation references made
up of:
. 1 byte which indicates the installation type (symbolic value :

1 for CTE.
2 for CTR.
3 for IE.
4 for IR).

2 bytes which indicate the installation number within the type
(numeric value).

The CTE and CTR installation types are contained in a Bank Processing
Center, the IE and IR installation types are contained in a SIT station.

JULY 1989 PeS1T VERSION 1 CHAPTER 3 46

It should be noted that the concepts of sending installation (IE and
GTE) or receiving installation (IR and GTR) should be considered
relative to the flow of banking operations (e.g. an outbound deposit
may be sent from a CTE to a CTR, via transfers from the CTE to the IE
by PeSIT, from the IE to the IA on the primary network, and from the
IR to the CTA by PeSIT) rather than in the sense of sending or
receiving a file by PeS IT. Consequently any installation (GTE, CTR, IE
or IA) may be, at any particular moment in time, in relation to PeSIT
either a caller/sender or a server/receiver. There are thus four flow
types possible :

CTE to IE
IE toCTE
CTR to IR
IR to CTA

• a file naming convention : the "File name" parameter is a string of
5 ASCII numeric characters. The parameters used by a SIT station to
describe non·ambiguously a SIT file are:
• the sending or receiving installation number (caUer or server
identification)
· the file type
· the file name
· the file creation date

The file type characterises the sort of file to be transfered : outbound
deposits, presentation reports, day end summaries, etc .. The list of
the file types used by the SIT Inter Bank Clearing and SIT Stock
Exchange networks, classified by flow type (IE to CTE, IR to CTA,
etc.) may be found in the "Functional Analysis of AS IT" and "CTB
Commands and Reports" SESA 70296 LP 01 210.

The file creation date is the specific SIT date which may not
correspond with the current system date.

• The three levels of priority defined by PeSIT (0, 1 and 2) are used
in the transfers between a SIT station and the CTBs for each data flow.
The choice of priority for a particular transfer is determined by the
applications using PeS IT.

* The SIT station limits the number of incoming transfers to three
for each installation, regardless of their priorities.
The SIT station limits also the total number of incoming transfers for
each priority. These limits are set by the GSIT.

* The files transfered between a SIT station and a CTB may be either
fixed or variable format and the maximum size of an article is 4044
bytes (which implies a maximum data element size of 4050 bytes).
The maximum size of an article may not be null.

• The choice of the data coding (ASCII or EBCDIC) for the file contents
is decided as an installation parameter when a user defines its SIT
connection characteristics. The SIT station does not care for the Data
coding parameter (PI 16). According to the installation concerned,
the station sends or expects to receive files appropriatly coded.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 47

'* Data compression is not implemented at the file transfer level.

'* The SIT MAC is an encrypted time-stamp associated with the file. It
is only sent for transfers originating from the station to the CTS.
Thus:

For transfers from the eTa to the station : the parameter "Digital
signature usage" has a value of 0 (or is absent) and the parameter
"SIT MAC" is absent. For transfers from the station to the CTS : the
parameter "Digital signature usage" has the value 1 and the
parameter "SIT MAC" contains the MAC. The deciphering of the MAC
and its validation are carried out by the application.

3.8.2 Non-SIT Profile

The Non-SIT profile is specified by :
'* the obligatory functional units

Kernel
Write
Checkpointing

.. the optional functional units

Read
Restarting
Suspension
Datagram
Error control

.. At the protocol level, the options of using multi-article FPDUs and
01 FPDU segmen1alion (use of FPDU.DTFDA, FPDU.DTFMA and
FPDU.DTFFA) are allowed. It should be noted that the use of these
options is not negotiated dynamically by the protocol and so should be
determined between the partners in advance.

* addressing: the caller and server identifiers are ASCII strings of 1
to 24 characters chosen by the PeSIT service users .

.. the implementation by file transfer monitors using the PeS IT Non
SIT profile of the "Store and Forward" functions (file re-route) is
possible. This procedure is detailed in Annexe B .

.. file naming : the parameter "file name" is a string of one to sixty
four ASCII characters. The file naming conventions depend on the
PeSIT service users .

.. the parameter "file type" should have the value 0 unless a specific
meaning has been decided upon between two file transfer monitors .

.. data compression may be implemented at the file transfer level. The
horizontal and vertical compression algorithms are given in Annexe
A

JULY 1989 PeSIT VERSION 1 CHAPTER 3 48

" the pre-connection phase :

The connection phase of PeS IT is preceded by a pre-connection phase,
independant of the PeSIT protocol. This extra phase allows the file
transfer monitors to know which file transfer protocol is being used
as soon as the lower communication layers are ready and also to
identify the caller.

Two messages have been defined for this function:

Message 1 : is composed of 24 bytes:

" the first 8 bytes : protocol used (PESIT 5 characters left
justified, followed by 3 blanks)

" the 8 following bytes : identifier (1 to 8 characters left justified
and blank padded)

* the last 8 bytes : password

Message 2 : acknowledgement: 4 bytes:

ACKO or NAKO

Both these messages are coded in EBCDIC. They are not part of the
PeSIT protocol elements.

Notice:

When using PeSIT.F', the pre-connection mesages are sent in the
first data packets exchanged immediatly after the virtual circuit set
up. This pre-connection phase must, while using PeSIT.F', be
considered as mandatory.

When using PeSIT.F or PeSIT.F", no pre-connection phase is defined.
Nevertheless a 24 byte message similar to message 1 defined above,
may be used:

• in PeSIT.F" in the a-DATA field of the CONNECT primitive

" in PeSIT.F in the user reference field of the S-CONNECT primitive

3.8.3 Secure Non-SIT Profile

The secure Non-SIT profile is identical to the Non-SIT profile except
that the use of the Security functional unit is obligatory in this
profile.

It should be noted that the Security functional unit which is common
to the Secure Non-SIT profile and the ETEBAC5 profile uses different
encryption algorithms in the two cases and so does not offer exactly
the same security functions.

The Secure Non-SIT profile only requires the use of the DES (Data
Encryption Standard) encryption/MAC computation algorithm.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 49

In this profile the Security functional unit provides

" reciprocal authentication

• confidential data transmission

• integrity of the transmitted data

Annexe C : USB of Security mechanisms describes how to implement
the security mechanisms for the Secure Non-SIT and ETEBACS
profiles.

Note:

The use of encryption devices for the transmission of coded data
across public data networks is covered by numerous laws which
differ between countries and which users of the Secure Non-SIT and
ETEBAC5 profiles should take into account prior to selecting these
profiles.

3.8.4 ETEBAC5 prOfile

The ETEBAC5 profile is characterised by :

" the obligatory functional units :

Kernel
Write
ReOO
Checkpointing

" the optional functional units :

Restarting
Suspension
Security

" The description of the use of the PeS IT protocol by the ETEBAC5
transport layer is described in the document: "Computer Information
Exchanges between Banks and their Customers - Standard ETEBAC5 -
Version 1.1".

" In the protocol chapter of the current document only the format of
the parameters and the protocol elements used in the ETEBACS profile
are described.

" Annexe C : Use of Security mechanisms describes how to implement
the security mechanisms for the Secure Non-SIT and ETEBACS
profiles.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 50

3 . 9 PoSIT SECURITY SERVICE

3.9.1

3.9.2

Functions provided

The security functions required for file transfer are

'* reciprocal authentication of the partners

" confidential data transmission (file contents)

* integrity of the transmitted data (file contents)

'* reciprocal non-repudiation

The PeSITservice and protocol describe the parameters needed to
implement the security mechanisms and the manner they are
exchanged. However the total implementation (algorithms, key
management, certificate management) are not part of the protocol.
Annexe C of this document describes how to use the security
mechanisms where they have an effect on the protocol.

The security parameters defined in PeS IT are intended to allow the
use of different algorithms to provide the functions listed below. In
the two profiles which use the Security functional unit, it was decided
10 use RSA and DES for the ETEBACS profile. The Secure Non-SIT
profile has a reduced function mode where only DES is required. It
should be noted that in this case the reciprocal non-repudiation
function is not available.

The fact that the security is parameterised in the protocol allows
considerable independance between the different functions. In the
Secure Non-SIT profile each function may be used completely
independantly of the others. In the ETEBAC5 profile, the reciprocal
non-repudiation requires the integrity function.

The implementation of the security functions may be negotiated for
each file transfer. However it is up to the system designers,
depending on their security requirements, to decide if the security
functions may really be re-negotiated for each transfer, or whether
several consecutive transfer within the same connection should use
the same security parameters.

Description of the primitives

The PeSIT service primitives are described in paragraph 3.6.3
except for the parameters specific to the Security functional unit.
The present paragraph is intended to complete their description by
the aspects related to the implementation of the Security functional
un it.

The role of each primitive in the Security functional unit is described
in this paragraph as well as the parameters supplementary to those
described in paragraph 3.6.3.

JULY 1989

(§a)
(§ b)

(§ c)
(§ e)
(§g)

(§ j)
(§ m)

PeSIT VERSION 1 CHAPTER 3 51

0) F.CREATE Service

• Function

This service element allows the calier to instruct the server which
security functions will be used for the following transfer. The calier
indicates which of the following functions will be used:

.. reciprocal authentication

.. integrity

.. confidentiality

.. digital signature

It should be noted that a digital signature requires the MAC to have
been calculated beforehand.

The server idicates in a positive or negative F.CREATE response
primitive if he accepts the security functions requested by the caller.

This service element also allows the exchange of certificates and the
authentication elements which make up the reciprocal authentication
of the partners (the complete reciprocal authentication process uses
the F.OPEN service as well).

The detail of the management of the certificates is given in Annexe C.

If several transfers take place in the same connection, the reciprocal
authentication need not be repeated for each transfer. In the same way
the certificates used to transport the keys and the digital signatures
need not be repeated for each transfer within a connection (as long as
the partners concerned, identified by the customer and bank
identifier parameters, do not change). However the indication of the
intention to use the encryption, integrity and digital signature
functions as well as the encryption and MAC elements must be
transmitted prior to each transfer.

• Parameter table

PARAMETER FCREATE FCREATE
request/indication response/confirmation

Authentication type (optional) +
Authentication elements + +
(optional)
MAC computation type (optional +
Encryption type (optional) +
Digital signature type +
(optional)
Certificate (optional) + +
Second certificate (optional) +

JULY 1989

(§ a)
(§ b)

(§c)
(§e)
(§g)

(§ i)
(§ m)

PeSIT VERSKJN 1 CHAPTER 3 52

b) F.SELECT Service

• function

The function of this service element within the Security functional
unit is identical to the F .CREATE service, the choice of the security
functions to be implemented for a transfer is always the
responsability of the Caller whether the file is being sent or
received.

• Parameter table

PARAMETER F.8ELECT F.8ELECT
request/indication response/confi rmation

Authentication type (optional) +
Authentication elements + +
(optional)
MAC computation type (optional +
Encryption type (optional) +
Digital signature type +
(optional)
Certificate (optional) + +
Second certificate (optional) +

c) f.OPEN Service

• Function

The function of this service element is to allow the exchange of the
third reciprocal authentication element for a write transfer (or the
second and third exchanges for a read transfer). The MAC computation
and encryption elements as well as the certificates that these
exchanges may require may also be exchanged at this time.

The detail of the management of the certificates is given in Annexe C.

• Parameter table

PARAMETER F.CHECK F.CHECK
request/indication respo nsa/confirmatio

(§d) MAC (optional) +

JULY 1989

(§b)

(§d)

(§ f)
(§ j)
(§ m)

PeS1T VERSION 1 CHAPlER3 53

d) F.CHECK Service

• Function

This service element allows partial MAGs to be transmitted if this
option has been selected. The partial MAGs are the results of the
intermediary MAC computations carried out on the entire file (plus
certain identification parameters of the file).

• Parameter table

PARAMETER F.OPEN F.OPEN
requestlind ication response/confirmation

Authentication elements +
(optional)
MAC computation elements + +
(optional)
Encryption elements (optional + +
Certificate (optional) +
Second certificate (optional) +

e) F.DATA.END Service

• Function

This service element allows the MAC, the digital signature and a
possible second digital signature to be transfered.

• Parameter table

PARAMETER F.DATAEND
request/indication

(§ h) MAC (optional) +
(§ i) Digital signature (optional) +
(§ I) Second digital signature +

(optional)

I) F.TRANSFER.END Service

• Function

This service element allows the acknowledgement of the digital
signature to be transfered.

JULY 1989 PeSIT VERSK:lN 1 CHAPTER 3 54

• Parameter table

PARAMETER F.TRANSFER.END F.TRANSFER.END
request/indication ra s po n 5 e/co nli rm a tic

(§k) Acknowledgment of the digital + +

(§ c)
(§d)

(§g)

(§ h)
(§ i)
(§ j)
(§ k)

signature (optional)

g) F.MESSAGE Service

• Function

This service element contains a message which may be protected by
the security mechanisms.

The functions which may be implemented with this service are:

• integrity
• digital signature

The MAC or the digital signature are applied to the message contained
in the F.MESSAGE primitive.

The mechanisms and the parameters required to implement these
functions for the service are identical to those used for a file
transfer.

• Parameter table

PARAMETER FMESSAGE FMESSAGE
requestli ndication esponse/confirmation

MAC ccmputation type (optional) +
MAC computation elements +
(optional)
Digital signature type (optional) +

MAC (optional) +
Digital signature (optional) + +
Certificate (optional) + +
Acknowledgment of the digital + +
signature (optional)

•

JULY 1989

3.9.3

PeSIT VERSION 1 CHAPlER3 55

Parameter description

a)Authentication type

This parameter indicates whether an authentication procedure wifl be
used and which mechanisms will used within it

authentication (yes/no)
used algorithm
operating mode

b)Authentication elements

This parameter contains the elements needed for the authentication of
the partners. Depending on the algorithm and the operating mode
determined by the "authentication" parameter, these authentication
elements will contain either random numbers in plain or encrypted
and/or encrypted keys.

c)MAC computation type

This parameter indicates if the file is to be transfered with a MAC. If
so the parameter indicates which MAC computation algorithm will be
used and its operating mode. The operating mode indicates if there is
only one MAC applied to the entire file or if, as well as the global
MAC, there will be partial MACs transmitted with each checkpoint
(MAC calculated only on the data transmitted since the previous MAC
was transmitted). It is also explicited if the MAC computation
elements are transmitted , in plain or encrypted form, in the MMAC
computation element" parameter. In order to calculate the MAC the
file identifiers (PI 11, PI 12, PI 51, PI 61 and PI 62) are used: the
contents of these PI will be treated by the algorithm as if they had
been concatenated to the beginning of the file.

MAC computation (yes/no)
used algorithm
operating mode
transfer of MAC computation elements

d)MAC computation elements

This parameter contains the elements (key, initialisation vector)
required to initialise the chosen algorithm for computation of the
MAC. This parameter is absent if the elements are transfered by
another means than the protocol. They may be protected by
encryption if this is indicated in the "transfer of Mac computation
elements" field of the "MAC computation type" parameter.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 56

e)Encryption type

This parameter indicates if the file is transmitted in encrypted form,
and which algorithm is used to encrypt it.
This parameter also indicates if the encryption elements are to be
transmitted in the "encryption elements" parameter and the
encryption method to be used (these elements may transit by another
means than the protocol).

encrypted data (yes/no)
used algorithm
operating mode
transfer of encryption element

f) Encryption elements

This parameter contains the elements (key, initialisation vector)
used to initialise the chosen algorithm for encryption of the file. This
parameter may be absent if one wishes to transfer them by another
means than the protocol. They may be protected by encryption if this
is indicated in the "transfer of encryption element" field of the
"Encryption type" parameter.

g) Digital signature type

This parameter indicates if the file is to be transfered with a digital
signature. Since the digital signing mode used requires the MAC to be
encrypted, this parameter has no sense unless the MAC computation
option has been selected in the "MAC computation type" parameter.
The algorithm indicated in the "used algorithm" field is the algorithm
used to transform the MAC into a digital signature by encryption.
Actually the only algorithm used is RSA. The field "double digital
signature" indicates that a second signature is present. In which case
the second signature will be another encrypted form of the MAC using
a different secret key (whose corresponding public key is provided in
the parameter "second certificate").

signature type
used algorithm
operating mode
double digital signature

h) MAC

This parameter contains the result of the MAC computation. It may be
a partial MAC (an intermediate result of the computation of the global
MAC calculated using the data transmitted since the previous partial
MAC was sent), or the global MAC. In order to calculate the MAC the
file identifiers (PI 11, PI 12, PI 51, PI 61 and PI 62) are used : the
contents of these PI will be treated by the algorithm as if they had
been concatenated in front of the first article in the file.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 57

i) Digital signature

This parameter contains the digital signature of the file which is an
RSA encryption using the sender's secret key of the concatenation of a
MAC calculated using the P111, PI 12, PI 51, PI 61 and PI 62 and
the MAC of the file (which already includes the above PI). These two
MACs are calculated independantly but using the same MAC
computation elements.

DCerlillc.te

This parameter contains an entity's certificate. This certificate is
made up of the entity identifier, the serial number of the certificate
storage device (serial number of a smart card), the entity's public
RSA key, the number of the security manager's RSA key used to sign
the certificate and the digital signature of the certificate (RSA
encryption under the security manager's secret key of a shadow -
resulting from hash coding the preceding fields of the certificate).

k)Acknowledgment 01 the Digital signature

This parameter contains a protected acknowledgment of the digital
signature. The acknowledgment is an RSA encryption under its
sender's secret key of the concatenation of the MAC received in the
digital signature, the date and time of the acknowledgment and a
control field describing the security controls made.

I) Second Digital signature

This parameter contains the second digital signature of a file produced
by an identical computation as that used for the "Digital signature"
parameter but using an RSA encryption under another of the sender's
secret keys whose associated public key is contained in the "second
certificate" parameter.

m)Second certificate

This parameter contains a second entity certificate needed when
several certificates are required for the same exchange
(authentication and digital signature or multiple digital signatures).
The structure of this parameter is identical to the "certificate"
parameter.

JULY 1989 PeSIT VERSION 1 CHAPTER 3 58

3.10 EXAMPLES OF PRIMITIVE SEQUENCES

3.10.1 Normal sequence

F.CON NECT

F.SE
F.

LECT
CREATE

.OPEN F

EL F.CANC
F.IRAN SFEREND

WRITE
FILE

The normal logical progression of services is illustrated by the
following state diagrams (figures 1, 2, 3, 4 and 5). The tables which
follow show the restrictions applicable to the sequencing of primitive
events for the caller and the server. These tables also show the valid
primitive events.

FIGURE 1 : SIMPLIFIED STATE DIAGRAM

IDLE

CONNECTED

FILE
SELECTED

DATA TRANSFER
IDlE

F.WRITE F.READ

F.RELEASE
F.ABORT

F.DESELECT

F.CLOSE

F.CANC EL
FER.END F.TRANS

READ
FIlE

F.DATA/F.DATA.END
F,CHECKlF.RESTART

F.DATAJF.DATA.END
F.CHECKlF.RESTART

JULY 1989 PeSIT VERSION 1

FIGURE 2 : STATE DIAGRAM
CONNECTION PHASE

CHAPTER 3

,-----6 7
IDLE

Any state
except "IDLE"

5

Connection pending Release pending

Caller transitions

1 F.CONNECT request
2 F.CONNECT confirmation (positive)
3 F.CONNECT confirmation (negative)
4 F.RELEASE request
5 F.RELEASE confirmation
6 F .ABORT request
7 F .ABORT indication

Server transitions

1 F.CONNECT indication
2 F.CONNECT response (positive)
3 F.CONNECT response (negative)
4 F.RELEASE indication
5 F .RELEASE response
6 F.ABORT request
7 F .ABORT indication

59

JULY 1989 PeSIT VERSION 1 CHAPTER 3

FIGURE 3 : STATE DIAGRAM
SELECTION AND FILE OPENING PHASES

4

Create file
pending

5

Open file
pending

1 0

3

Select file
pending

2

FILE SELECTED

DATA TRANSFER
IDLE

File release
pending

Close file
pending

60

JULY 1989

TRANSITIONS
(figu re 3)

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3

Note: + Ve : positive
. Ve : negative

PeSIT VERSION 1

CALLER

F.SELECT.request
F.SELECT.confirmation (+Ve)
F.SELECT.confirmation (~Ve)
F.CREATE.request
F.CREATE.confirmation (+Ve)
F.CREATE.confirmation (-Ve)
F.DESELECT.request
F.DESELECT.confirmation
F.OPEN.request
F.OPEN.confirmation (+Ve)
F .OPEN.confirmation (~Ve)
F.CLOSE.request
F .CLOSE.confirmation

CHAPTER 3 61

SERVER

F.SELECT .indication
F.SELECT.response (+Ve)
F.SELECT.response (-Ve)
F .CREATE.indication
F.CREATE.response (+Ve)
F.CREATE.response (-Ve)
F.DESELECT.indication
F.DESELECTJesponse
F.OPEN.indication
F.OPEN.response (+Ve)
F.OPEN.response (-Ve)
F.CLOSE.indication
F.CLOSE.resfXlnse

5

JULY 1989

Start read
pending

End read

Read file

10 11 12

PeSIT VERSION 1

FIGURE 4 : CALLER STATE DIAGRAM
DATA TRANSFER PHASE

9

DATA TRANSFER
IDLE

20

End (read)
transfer
pending

23 24

Transfer
interruption

pending

7101718

End (write)
transfer
pending

CHAPTER 3

1 9

Start write
pending

End write

1 7

21

1 4

1 6
1 3

1 5

Restarting
pending

Write file

789

62

6

------- ------

5

JULY 1989

Start read
pending

End read

Read file

10 11 12

PeSIT VERSION 1

FIGURE 5 : SERVER STATE DIAGRAM
DATA TRANSFER PHASE

9

DATA TRANSFER
IDLE

20

End (read)
transfer
pending

23 24

Transfer
interruption

pending

7101718

End (write)
transfer
pending

22

CHAPTER 3

1 9

63

Start write
pending

End write

1 7

21

1 4

1 6
1 3

1 5

Restarting
pending

Write file

789

6

JULY 1989 PeSIT VERSION 1 CHAPTER 3 64

CALLER TRANSITIONS SERVER TRANSITIONS
(figure 4) (figure 5)

1 F.READ,D F.READ,I
2 F.wRITE,D F.wRITE,1
3 F.READ,C(-Ve) F.READ,R (-Ve)
4 F.WRITE,C(-Ve) F.WRITE,R (-Ve)
5 F.READ,C(+Ve) F.READ,R (+Ve)
6 F.wRITE,C (+Ve) F.wRITE,R (+Ve)
7 F.DATA,D F.DATA,I
8 F.CHECK,D F.CHECK,I
9 F.CHECK,C F.CHECK,R

1 0 F.DATA,I F.DATA,D
1 1 F.CHECK,I F.CHECK,D
1 2 F.CHECK,R F.CHECK,C
1 3 F.RESTART,D F.RESTART,I
1 4 R.RESTART,C F.RESTART,R
1 5 F.RESTART,I F.RESTART,D
1 6 F.RESTART,R F.RESTART,C
1 7 F.DATA.END,D F.DATA.END,I
1 8 F.DATA.END,I F.DATA.END,D
1 9 F.TRANSFER,END,D F.TRANSFER.END,I
20 F.TRANSFER,END,C F.TRANSFER.END,R
21 F.CANCEL,D F.CANCEL,D
22 F.CANCEL,I F.CANCEL,I
23 F.CANCEL,R F.CANCEL,R
24 F.CANCEL,C F.CANCEL,C

JULY 1989 PeSIT VERSION 1

TABLE 1 VALID CALLER SERVICE
PRIMITIVE SEQUENCES

FOlLONEDBY ~
0 d'i 0 0 a ili ti a:

&3
0 0

0 z q ...J ...J

~
0 w "- ~ 0

~ "' w w w
z

~ '" ~ z § tlj " " ~
f- g ~ ~ w '" ~
0 0

~ :;! PRECEDED BY u: u: u: u:
F.CONNECT,D
F.CONNECT,C •
r. T,O

F.SELECT C(+) • •
F.SELECT,C(-) •
F.CREATE,D

F.CREATE,C(+) • •
F.CREATE,C(-) •
F.OPEN,D

F.OPEN,C(+) • •
F.OPEN,CI-) • •
FWRITE,D

F.WRITE,C(+) • • •

F.WRITE,C(-) • •

F.DATA,D • • •
F.DATA.END,D •
F.TRANSFER.END,D

F.TRANSFER.END,C •
F.READ,D

F.READ,CH •
F.READ,C(-) •
F.DATA,1 •

CHAPTER 3 65

0 0:

i 0 >-' b'

~
0 0: 0: 0

0 >-' @ @ ;0 '" f- a

~ "' "' eli i5 i5 w w w
0: 0: 0:

~ u: u: u: u: u:
0

• • •
0
•

• • •
0
•

• • •
10

• •
•
0

• •
•

• • •
• •

0
•
0

• •
• •

• • •
Key : D request - I indication - R response - C confirmation - " possible - 0 possible (but
confirmation of the preceeding primitive is awaited).

---_ .. _-------

JULY 1989 PeSIT VERSION 1 CHAPTER 3 66

0
F<llOWEDBY ci

0
z

~
0 0 a: 0 ci ti cr: ~ @ 0 0 0 ~ ~ 0 Z q -1 -1

~
0 a: 0

ti 0 w ~ ~ q
~

0
~ '" '"

w w w

~ ~ g >-' z

~
z

~ ~ ~
CO 0

~ § ~ >- .,
~ :l U) Ul w ~ «

1:1 ~ ~
w w w

U) 0 0 CO
~

a: a: a;
~ PRECEDED BY u: u: u: u: u: u: u: u: u: u: u.

F.DATA.END,I • • •
F.CANCEL,D 0

F.CANCEL,I • •
F.CANCEL,R • •
F.CANCEL,C • •
F.CLOSE,D 0

F.CLOSE, C • • •
F.DESELECT,D 0

F.DESELECT,C • • • •

F.RELEASE,D 0

F.RELEASE,C •

F.ABORT,D •

F.ABORT,I •
F.CHECKD • • • • •
F.CHECK,I • • • •
F.CHECK,R • • • •
F.CHECKC • • • • •
F.RESTART,D 0 0

F.RESTART,I • • •
F.RESTART,R • • • • • •
F.RESTART,C • • • • • •

JULY 1989 PeSIT VERSION 1

TABLE 2 : VALID SERVER SERVICE
PRIMITIVE SEQUENCES

FOlLOWED BY :3 z
a: UJ

~ cr:
@ a:

~ " a: a:
ti ~

a: a; !!:J ..J

~ ~ I!i ~
w z

!!:J

~
~ Sf § W

~ ~
UJ

~ PRECEDED BY if> :;! " u: u: u: u. u:
F.RELEASE,I

F.RELEASE,R

F.ABORT,D

F.A80RT,1

F.CHECK,D •
F.CHECK, I •
F.CHECK,R •
F.CHECK,C •
F.RESTART,D 0
F.RESTART,I •
F.RESTART,R •
F.RESTART,C •
F.CONNECTI •
F.CONNECT,R

F.SELECT,I •
F.SELECT,R(+)

F.SELECT,R(-)

F.CREATE,I •
F.CREATE,R(+)

F.CREATE,R (-)
F.OPEN,I •
F.OPEN,R(+)

F.OPEN,R(-)

F.wRITE,1 •
F'wRITE,R(+) •
F.wRITE,R(-)

F.DATA.I •
F.DATA.END,I

CHAPTER 3 67

" q a: D

I z b: t;' " a: " w " a:

~ D <i g ~ ~
;0 g f-CIi if> « UJ w a: " " a; a:

~ « u: u: u: u: u: u. u: u.

• •

• • • •
• • •
• • •

• • • • •
0

• •
• • • • •
• • • • •

•
•
•
•
•
•
•
•
•
•
•

• •
•

• • •
• • •

L
C
r

" :n " " " " " " " " " " " " " -u
JJ b 0 h h h h h h 0

~
JJ JJ JJ :.; :.; m

m m @ @ ~ ~
,. ,. ,. m m m JJ JJ ~ (fl (fl z z --< ,. ,. ,. ,. ,.

m m " " " :;- .0 z Z r r rn rn m m m m 0 0 0 (fl (fl f!l ~ ~
m r m .

JJ r C r JJ " " " " JJ 0 Z JJ - m m ~ -.--< .0 , + :p JJ

~ JJ - -0 m in z z
0 0 ~ :n

-<
w

'" w

-u • w
::;

F.CONI'-ECT.R

F.SELECT.R

F.OPEN.R

FWRITE.R < m

• F.TRANSFEREND.R ill
i5 • F.CLOSE.R z

• F.DESELECT.R

• • F.CANCELD

• F.CANCELR

F.CREATE.R

• F.READ.R

• • F.DATA.D 0
:I:

• • F.DATAEND.D

• • F.CHECKD ~
JJ

F.OiECKR
~

• • • F.RESTART.D

F.RESTART.R

F.RElEASE.R

• • • • • • • • • • • • • • • F.ABDRT.D '" '"

JULY 1989 PeSIT VERSION 1 CHAPTER 3

3.10.2 Normal sequence for a write transfer

Transfer
processor A PeSIT

CALLER IDlE

• F.CONNECT.C

F.CREATE,D • F.CREATE,C • FIlE:

FOPEN,D • • FOPEN,C

~ ,

,

F.CHECK,D

,

fDATA,D

F.CHECK,O • F.CHECK,C • F.DATA,O • F.CHECK,D

F.DA 0,0

F: , •
F.TRANSFER-END,C

• I
F. , • • F.CLOSE,C

F:i5EsELECT,O

• F.DESElECT, C •
F.RELEASE,D

, •

•

illlC

F.

0

•

Transfer
processor B

SERVER

FCONNECT,R

~
F.CREATE,R

F.OPEN,I • F.OPEN,R

~I F! ITE,R

,

F.DATA,I • F.CHECK,I

F.OATA,I •
F.DATA,1 •
F.CHECK,I • • F.CHECK,R

c.DATA,
I

F.e I

l-ENO,I

,

I

F.CLOSE,R

r :T,I

:T, R

F.RELEASE,I

F.RELEAS~,1'i •

69

JULY 1989 PeSIT VERSION 1 CHAPTER 3 70

3.10.3 Normal sequence for a read transfer

Transfer PeSIT PeSIT Transfer
processor A processo r B

CALLER CONNECTED STAlE SERVER

F.SELECT,D F.SELECT,I
~ ~

• F.SELECT,C F.sELECT,R •
F.OPEN,D

~
F.OPEN,I

~

F.OPEN,C F,OPEN,R

• •
F.READ,D F.READ,I

~ ~

F.READ,C F.READ,R

• •
F.DATA,I F.DATA,D

• •
F.DATA,I F.DATA.D

4 ..
F.CHECK,I F.CHECK,D

• •
F.DATA,I F.DATA.D

• •
• F.DATA,I F.DATA,D

F.CHECK,I F.CHECK,D

• •
F.DATA-END,I F.DATA-END,D

• •
F.TRANSFER-END,D F.TRANSFER-END,I

~ ~
F.TRANSFER-END,C F.TRANSFER-END,R

• •
F.CLOSE,D

~
F.CLOSE,I ..

4 F.CLOSE,C F.CLOSE,R
4

F.DESELECT,D F.DESELECT,I
~ ~

• F.DESELECT,C F.DESELECT,R • CONNECTED STAlE

JULY 1989 P.SIT VERSION 1 CHAPTER 3 71

3.10.4 Sequence with interruption of the file transfer

Transfer PeSIT PeSIT Transfer
processor A processor B

CAUER FILE OPEN STATE SERVER

F.wRITE,D F.WRITE,I • •
F.wRITE,C .,:.wRITE,R

4
F.DATA,D F.DATA,I • •
F.DATA,D • F.DATA,I •
F.CHECK,D F.CHECK,I • •
" "
" "
F.DATA.D F.DATA.I • •
F.CANCEL,I F.CANCEL,D

4 •
F.CANCEL.R F.CANCEL.C

• •
FILE OPEN STATE

F.CLOSE,D F.CLOSE,I • •
.,:.CLOSE,C ~CLOSE,R

F.DESELECT,D F.DESELECT,I

• • F.DESELECT,C F.DESELECT,R
4 4

CONNECTED STATE

JULY 1989 PeSIT VERSION 1 CHAPTER 3 72

3.10.5 Sequence with restarting

Transfer PeSIT PeSIT Transfer
processor A

CAUER

F.wRITE,D

~
F.wRITE,C •
F,DATA.D

~

F.DATA,D
~

F.CHECK,D

•
F.DATA.D

~

F.DATA,D
~

F.DATA,D
~

"
"

F.RESTART,I

•
F.RESTART,R

~

F.DATA,D

F.DATA,D

F.CHECK,D

F.DATA,D

"
"
F.DATA-END,D

F.TRANSFER-END,D

F.TRANSFER-END,C

•

~

•
~

•
~

FILE OPEN STATE

FILE OPEN STATE

FILE OPEN STATE
(transfer terminated)

processor

SERVER

F.wRITE,1
~

F.wRITE,R •
F,DATA,I

•
F.DATA,I •
F.CHECK,I

•
F.DATA,I

~
F.DATA,I •
F.DATA,I •
"
"

F.RESTART,D

•
F.RESTART,C

~

F.DATA,I
~

F.DATA,I

•
F.CHECK,I

~

F.DATA,I

"
"
F.DATA-END,I •
F.TRANSFER-END,I

F.TRANSFER-END,R

•
~

B

JULY 1989 PeS!T VERSON1 CHAPTER 4 73

CHAPTER 4
DESCRIPTION OF THE PeSIT PROTOCOL

JULY 1989 PeSIT VERSCN 1 CHAPTER 4 74

4. DESCRIPTION OF THE PeSIT PROTOCOL

4.1 INTRODUCTION

The PeSIT protocol is conceptualised as an abstract machine in which messages
(FPDU : File transfer Protocol Data Unit) are exchanged between two corresponding
PeS IT units: the caller and the server. These messages contain a protocol specific
header, a variable zone containing some PeSIT protocol management information
(i.e. the parameters) and the file data. The variable zone and the file data may be
absent from certain messages.

The complete description of the protocol is based on the following elements:

- the specification of the message transfer procedures between two PeSIT units,

- the specification and the coding of the protocol data units (FPDU).

These procedures are defined in terms of :

- interactions between corresponding PeSIT units, in terms of FPDUs exchanged,

- interactions between a PeSIT unit and the PeSIT service user on the same system,
in terms of PeSIT service primitive exchanged,

- interactions between a PeS1T unit and the "Communication system" service
provider, in terms of "Communication system" service primitives exchanged.

The description of the protocol being largely identical for PeSIT.F, PeSIT.F',
PeSIT.F" and PeS1T.F"', the differences are indicated whenever necessary.

4.2 SERVICE AND PROTOCOL CORRESPONDANCE

The PeSIT protocol layer communicates with the user by means of primitives which
were defined in the previous chapter (PeSIT service). The primitives cause or are
the result of FPDU messages exchanged between two corresponding PeSIT units over
a "Communication system" connection.

The following table gives a list of the FPDUs and their correspondance with the PeSIT
service primitives. The meaning of the abreviations used is :

DI : requesVindication,

RC : response/confirmation.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 75

SERVICE PRIMITIVES RELATED FPDU DEFINITION

PeSIT F. CONNECT, DI FPDU.CONNECT Regime establish. request
regime F. CONNECT, RC FPDUACONNECT Regime establish. confirm
establishment positive

F. CONNECT, RC FPDU. RCONNECT Regime establish. refusal
negative

File selection F.CREATE, DI FPDU.CREATE File creation
ard F.CREATE, RC FDPU.ACK(CREATE) Creation confirm
deselect ion F.SELECT, DI FPDU.sELECT File selection

F.SELECT, RC FDPU.ACK(SELECT) Selection confirmation
F.DESELECT, DI FPDU.DESELECT File deselection
F.DESELECT, RC FDPU.ACK(DESELECT) Deselection confirmation
F.MESSAGE, DI FPDU.MSG Datagram

FPDU.MSGDM Segmented datagram: begin
FPDU.MSGMM Segmented datagram: current
FPDU.MSGFM Segmented datagram: end

F.MESSAGE, RC FPDU.ACK (MSG) Datagram confirmation

File open F.OPEN,DI FPDU.ORF File open
and close F.OPEN,RC FPDU.ACK(ORF) Open confirmation

F.CLOSE,DI FPDU.CRF File close
F.CLOSE,RC FPDU.ACK(CRF) Close confirmation

File transfer F.WRITE,DI FPDU.WRITE File write
begin and F.WRITE, RC FPDU.ACK (WRITE) Write confirmation
end F.READ,DI FPDU.READ File read

F.READ, RC FPDU.ACK (READ) Read confirmation
F. TRANSFER. END, DI FPDU.TRANS.END Transfer end
F.TRANSFER.END, RC FPDU.ACK(TRANS.END) Transfer end confirmation

Bulk data F. DATA,DI FPDU.DTF File data
transfer FPDU.DTFDA Segmented data: begin

FPDU.DTFMA Segmented data: current
FPDU.DTFFA Segmented data: end

F.DATA-END, DI FPDU.DTF.END Data end
F.CHECK, DI FDPU.SYN Checkpoint
F.CHECK,RC FDPU.ACK(SYN) Checkpoint confirmation

F.RESTART, DI FPDU.RESYN Restart
F.RESTART, RC FPDU.ACK (RESYN) Restart confirmation

Transfer F. CANCEL, DI FPDU.lDT Transfert interrupt
interruption F. CANCEL, RC FPDU.ACK (IDT) Interrupt confirmation

Regime F.RELEASE, DI FPDU.RELEASE Regime termination
termination F. RELEASE, RC FPDU.RELCONF Termination confirmation

F.ABORT, DI FPDU.ABORT Abrupt termination

JULY 1989 PeSIT VERSION 1 CHAPTER 4 76

4.3 USE OF THE "COMMUNICATION SYSTEM" SERVICE

ThiS paragraph defines the way in which the "Communication system" service
primitives are used by PeS IT .

PeSIT
protocol layer

"Communication system"
service

"Communication system"
protocol layer

The "Communication system" can be one of four types:

- ISO Session layer, used with a packet switching network,

- network layer (X25 or an alternative type),

- NETEX layer (when Hyperchannel is used),

- ISO session layer used with an ISO 8802-3 local area network.

JULY 1989 PaSIT VERSION 1 CHAPTER 4 77

4.3.1 Use of the Session service by PeSIT.F

The PeSIT.F file transfer protocol uses the ISO Session layer directly.

Usually the ISO Session layer is made up of a Kernel functional unit. which
all implementations should offer, and eleven other functional units which
mayor may not be provided by a particular Session entity and whose usage
is negotiated between two Session entities during the connection set-up
phase.

For the PeSIT,F file transfer protocol the following functional units are
required:

- kernel,

- half-duplex transmission (with the associated data token).

- typed data transfer.

The following table details which of the Session services are used.

SERVICE FUNCTION FUNCTIONAL UNIT

&CONNECT Session connection reauest Kernel
S-ACCEPT Session connection acceptance Kernel
S-RELEASE End of Session Kernel
S-REFUSE Session connection refusal Kernel
S-U-ABORT User break Kernel
S-P-ABORT Supplier break Kernel
S-DATA Normal data transfer Kernel
S-TOKEN-GIVE Data Token release Half-duDlex
S-TYPED-DATA Typed data transfer Tvped data transfer

The PeSIT.F messages (FPDU) are transmitted using either the S-DATA
Session service element, or as user data within the user service elements
used.

The following table shows the Session service elements used to transmit the
PeSIT.F messages (FPDU).

a) Association of a Session connection with a PeSIT.F
connection.

A PeSIT connection is associated with a session connection set up for
this purpose. The session connection is set up via the S-CONNECT
primitive which transports the FPDU.CONNECT in the user data field.
This primitive is always sent by the caller. During this phase the
PeSIT prolocol options (use 01 F.CHECK and F.RESTART) and the
session functional units to be used whithin the session are negotiated.

Connection acceptance is provided by the S-ACCEPT primitive, which
is always sent by the server.

JULY 1989 PeSIT VERSK)N 1 CHAPTER 4 78

If the connection cannot be set up, the refusal is indicated by the S
REFUSE primitive. The S-REFUSE primitive does not contain any user
data so the FPDU.RCONNECT is inserted in the cause field which may
contain apart from the cause code, up to 512 bytes of user data.

b) End of session connection

The session may terminate in one of three ways:

- normal termination which may only be invoked by the caller
(connection limitation). This is provided by the S-RELEASE service.

- abnormal termination invoked by either of the PeSIT.F units. This is
provided by the S-U-ABORT service. The user data field contains the
FPDU.ABORT.

- spontaneous disconnection by the session protocol. This is provided
by the S·P·ABORT service.

c) Normal data transmission

Nearly all the PeSIT.F protocol units (FPDU) are transported by the
S-OATA service.

The dialogue is of the alternate bi-directional type (semi-duplex) the
right to transmit being transfered. in either direction, by the S
TOKEN-GIVE service.

d) Checkpointing/restart

When the checkpointing option is chosen, the checkpoints are set by the
emission of an FPOU.SYN, in the user data field of the S-OATA service.
The acknowledgement of the checkpoint is made by the emission of an
FPOU.ACK(SYN), in the information field of an S-TYPEO-OATA service
element.

If the restart option has been upheld, a restart request is made by
sending an FPOU.RESYN, in the user data field of an S-OATA service
element. The confirmation of the restart is made by sending an
FPDU.ACK(RESYN). in the user data field of an S-DATA service
element.

In case the PeSIT unit does not hold a data token, the emission of the
FPOU.RESYN is provided by use of the S-TYPED-OATA service element.

e) Transmission of typed data

The S-TYPEO-OATA service is used by PeSIT units who do not hold a
data token to :

- interrupt the data transfer: emission of an FPOU.lOT (F.CANCEL
service element),

- confirm checkpoints: emission of FPOU.ACK(SYN),

- request the restart of a transfer: emission of an FPOU.RESYN.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 79

f) Restrictions imposed by the tokens on the use of the
Session service

The rules concerning the use of typed data and the transfer of data
tokens are defined in the preceding table. Collision cases are resolved
by applying the following rules :

1 - the rules of paragraph 4.8.3,

2 - a unil which holds a data token and is waiting for an
FPDU.ACK(IDT) or an FPDU.ACK(RESYN), should release it to
the other unit with whom it is corresponding, by a token
transfer without emission of an FPDU,

The last rule is provided for times when a unit has sent an FPDU.IDT or
an FPDU.RESYN and then receives an FPDU with token, which should be
ignored in application of the priority rules.

The following pictograms illustrate this rule and its use in a certain
number of typical cases.

Conventions:

- ND : normal data

- TO : typed data

* : token.

JULY 1989 PeSIT VERSON1

COLLISION TRANSFER.END/IDT

CALLER!
SENDER

•

(WRITE)

TRANS.ENO (ON) 10T(0T)

SERVER!
RECEIVER

COLLISION TRANSFER.END/RESVN

CALLER!
SENDER

•

•

(WRITE)

RANS.ENO (ON)

SERVER!
RECEIVER

SERVER!
SENDER

CHAPTER 4

(READ)

OTF.ENO (ON)

TOKEN GIVE

80

CALLER!
RECEIVER

TRANS.ENO (ON)

CALLER!
RECEIVER

(READ)
SERVER
SENDER

• TRANS.ENO (ON) RESYN(O

-----------,.,--------

JULY 1989 PeSIT VERSON1

COLLISION DTF.END lOT (READ)

SERVER! CALLER!
SENDER RECEIVER

DTF.END ION) lOT lOT)

COLLISION RESVNIIDT (READ)

SERVER!
SENDER

OTFION}

CALLER!
RECEIVER

CHAPTER 4 8'

JULY 1989 PeSIT VERSON1 CHAPTER 4 82

4.3.2 Use of the Network service by PeSIT.F'

The PeSIT.F' protocol defined in this document relies on a level 3 network
service.

Three different cases may be identified:

· use of a synchronous link in X25 packet mode,

· use of a telephone link in X32 mode,

· use of an asynchronous link (possibly via the PSTN) to access an X25
network via a PAD (Packet Assembler·Disassembler).

4.3.2.1 Use of a synchronous X.2S link

It is presumed that the network connection has been set up
previously and that it is maintained throughout the PeSIT
connection.

All the PeSIT.F' protocol units (FPDU) are transmitted using the
N-DATA service.

The service indications provided by the network layer are
interpreted in the following way :

- N-RESET -IND : emission of an FPDU-ABORT,

- N-DISC : emission of an F-ABORT-INDICATION,

- N-EXPEDITED-DATA : (interrupt packet) ignored by PeSIT,

4.3.2.2 Use of a dial-up X.32 link

The interface provided for a telephone link used in X32 mode is
identical to that provided for a synchronous link used in X25
mode. The reactions of PeSIT.F' are therefore identical to those
described above.

4.3.2.3 Use of an asynchronous link (PAD)

Two specific problems must be resolved when using an
asynchronous link:

- protection against transmission errors on the terminal link,

- non transparent data transmission by the PAD.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 83

a) protection against transmission errors on the
terminal link

To forsee the possibility of transmission errors on the
terminal link, an error control mechanism, using a
polynomial calculation (eRG), may be used in PeSIT.F'.

The caller indicates in the FPDU.CONNECT that he will be
using a eRe. All the succeding FPDUs (including the
FPDU.CONNECT) will then be completed by a t6 bit CRC. The
eRG is calculated on all the bytes of the FPDU including both
the header and the parameters. The two bytes of the eRG are
not included in the length field of the FPDU header.

The GRG calculation algorithm is the same as in the ISO Glass
4 Transport protocol.

The receiver of an FPDU should check the validity of the GRG.
If an FPDU with an incorrect GRG is detected, the receiver
replies with either a FPDU.RESYNG (diagnostic code :
transmission error) during the data transfer phase or an
FPDU.ABORT (diagnostic code 310 : network inCident) during
any phase other than the data transfer phase.

In addition to this protection, the use of the "number of data
bytes" (PI 27) and "number of articles· (PI 28)
parameters in the FPDU.TRANS.END and
FPDU.ACK(TRANS.END) eliminates the possibility of losing
one or more FPDU.DTF.

b) PAD transparency

To eliminate the problem of the PAD being non transparent to
certain control characters the transparent PAD profile is
selected (Transpac profile 14).

This profile may be selected either prior to setting up the
virtual circuit by use of a local command from the
asynchronous DTE to the PAD, or after establishment of the
virtual circuit by a transparent profile selection message
sent by the synchronous X25 DTE to the PAD. In either case
the selection of the PAD profile must be made prior to the
FPDU.CONNECT being sent by the caller.

By choosing the Transpac profile 14 the asynchronous DTE
still has to ability to return to command mode by sending a
BREAK signal to the PAD.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 84

4.3.3 Use of the Netex service by PeSIT.F"

The PeSIT.F" file transfer protocol relies on the session type interface
provided by NETEX.

Within this interface PeSIT .F" uses the following primitives :

PRIMITIVE FUNCTION

OfFER Accept incoming calls

CXN<ECT Connection request

CONFIRM Accept connection

DlscrnNECT Connection break

CLC6E Connection shut down

READ Receive data

WRITE Transmit data

The OFFER primitive is used by a PeS IT .F" unit which is prepared to act as a
server to notify NETEX that it will accept incoming calls.

All the NETEX interface primitives authorise data emission to another
correspondant. The maximum length transmitted at a time is negotiated
during the connection set up phase. It is presumed to be always sufficient to
transport the PeSIT.F" messages (FPDU).

The PeSIT.F" messages (FPDU) are therefore transmitted using either the
WRITE primitive (for emission) and the READ primitive (for reception) or
as user data within other primitives.

JULY 1989 PeSIT VERSON1 CHAPTER 4 85

The following table lists the primitives used to transmit the PeSIT.F"
messages (FPDU).

PeSIT.F" MESSAGES TRANSPORTED BY

FPDU.RELCONF

FPDU.ACK(CREATE)
FPDU.SELECT
FPDU.ACK(SELECT)
FPDU.DESELECT
FPDU.ACK(DESELECT)
FPDU.MSG
FPDU.MSGDM
FPDU.MSGMM
FPDU.MSGFM

FPDU.ACK(ORF)

FPDU.ACK(READ)
FPDU.WRITE
FPDU.ACK(WRITE)
FPDU.TRANSFER.END

FPDU.DTFDA
FPDU.DTFMA
FPDU.DTFFA
FPDU.DTF.END
FPDU.SYN
FPDU.ACK(SYN)
FPDU.RESYN

CONFIRM

CLOSE

READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE
READ/WRITE

READ/WRITE
READ/WRITE
READ/WRITE
READIWRITE

READIWRITE
READIWRITE
READ/WRITE
READIWRITE
READ/WRITE
READ/WRITE
READ/WRITE

COMMENTS

Provided that the
PeSIT.F"server has sent

OFFER beforehand

a) Association of a NETEX connection with a PeSIT.F"
connection.

A PeSIT connection is associated with a NETEX connection set up for this
purpose. A PeSIT.F" which accepts to act as a server must use the
OFFER primitive to indicate to NETEX that it will accept incoming calls.
The session connection is set up via the CONNECT primitive which
transports the FPDU.CONNECT. This primitive is always sent by the
caller.

Connection acceptance is provided by sending an FPDU.ACONNECT in a
CONFIRM primitive.

JULY 1989 PeSIT VERSkJN 1 CHAPTER 4 8.

If the connection cannot be set up, the refusal is indicated by an
FPDU.RCONNECT which is sent in a DISCONNECT primitive.

b) End of session connection

The session may terminate in one of three ways:

• normal termination invoked by the caller who sends an FPDU.RELEASE
in a CLOSE primitive. The server replies with an FPDU.RELCONF in a
CLOSE primitive.

abnormal termination invoked by either of the PeS IT .F" units by
sending an FPDU.ABORT in a DISCONNECT primitive .

. spontaneous disconnection by the NETEX layer. This is provided by a
DISCONNECT primitive returned after a READ.

c) Normal data transmission

All the PeSIT .F" protocol units (FPDU) are sent and received by the
READ and WRITE primitives. The length of data which may be
transmitted by a READ or WRITE is fixed by the two units during the
connection phase.

4.3.4 Use of the Session service on a local area network by PeSIT.F'"

The PeSIT.F'" file transfer protocol allows a local area network which
complies to ISO 8802.3 (identical to IEEE 802.3) to be used as the
"Communication system".

Since such a local area network does not provide a sufficiently reliable
service, a Class 4 ISO Transport layer must be used above it (this class
allows error detection and restarts upon errors). In order to provide as
close a service as PeSIT.F , it has been decided to use an ISO Session layer
above the Transport layer.

This defines the following architecture for PeSIT.F'" :

PeSIT.F'"

ISO Session

ISO Transport Class
4

ISO 8802.3

identical to PeSIT.F

Note : a local area network which conforms to ISO 8802.3 (or IEEE 802.3)
is very similar to an Ethernet local area network (defined by Intel, Xerox
and DEC). The only difference is in the frame header, the length field in the
ISO 8802.3 standard corresponds with the type field of the Ethernet
definition.

...

JULY 1989 PeSIT VERSION 1 CHAPTER 4

4.4 PROTOCOL UNIT (FPDU) SPECIFIC PROCEDURES

This chapter defines the valid sequences of PeSIT protocol elements.

Each FPDU message is described in the following manner:

• contents of the FPDU,

- transmission procedure for the FPDU,

- receiving procedure for the FPDU.

An exchange diagram is provided for each phase.

4.4.1 FPDU.CONNECT

87

The FPDU.CONNECT is sent by the PeSIT caller in the "Idle" state to set up a
PeSIT connection, over a "Communication system" connection which has
already been set up for the same PeS IT caller.

Call acceptance

PeSIT PeSIT

"'die" state

F.CONNECT, D FPDU.CONNECT F.CONNECT, I
~ ~

F.CONNECT, C (.ve) FPDUACONNECT ... F.CONNECT, R

"Connected" state

Call refusal

PeSIT PeSIT

"Idle" state

F.CONNECT, D F.CONNECT, I .. FPDU.CONNECT

F.CONNECT, C (-ve) ... FPDU.RCONNECT ... F.CONNECT, R

"Idle" state

a) Contents of the FPDU.CONNECT

The FPDU.CONNECT contains all the parameters of the F.CONNECT
request primitive, plus :

- ID.SRC : FPDU originator's connection identification allocated by the
calling PeS IT. Any non zero value.

- ID.DST : FPDU receiver's connection identification. Equal to zero in the
FPDU.CONNECT.

•

JULY 19B9

- ------ ----------

PeSIT VERSON1 CHAPTER 4 88

b) Sending the FPDU.CONNECT

An F.CONNECT request primitive entails the allocation of a
"Communication system" connection by PeSIT to the PeSIT connection. To
set up this connection:

- PeSIT.F sends the FPDU.CONNECT as user data in the session
oonnection request primitive S-CONNECT. PeSIT.F then passes into the
"connection pending" state.

- PeSIT.F' sends an explicit FPDU.CONNECT in the normal data flow by
an N-DATA primitive, after seting up the network connection.
PeSIT .F' then passes into the "connection pending" state.

c) Receiving an FPDU.CONNECT

The reception of an FPDU.CONNECT validated by PeSIT in the "Idle" state
causes the user defined by the "server identification" parameter of the
FPDU.CONNECT to be notified via an F.CONNECT indication primitive.

The PeSIT server waits for an F.CONNECT response primitive from the
PeS IT service user requested whilst in the "connection pending" state.

4.4.2 FPDU.ACONNECT

A PeS IT unit which receives an FPOU.CONNECT may accept the connection
request by sending an FPOU.ACONNECT in reply to the requesting PeSIT
caller, via the same "Communication system" connection.

a) Contents of the FPDU.ACONNECT

The FPDU.ACONNECT contains all the parameters of the F.CONNECT
response primitive, plus:

• 10.SRC : FPOU originator's connection identification allocated by the
PeS IT server in the FPOU.ACONNECT. Any non zero value.

- 10.OST : FPOU receiver's connection identification. Equal to the lD.SRC
parameter received in the FPOU.CONNECT.

PeSIT PeSIT
FPDU.CONNECT

ID.SRC ID.DST

)()()()(0000 I
FPDU.ACONNECT

ID.DST ID.sRC

-I)()()()(yyyy

JULY 1989 PeSIT VERSON1 CHAPTER 4 89

b) Sending the FPDU.ACONNECT

The F.CONNECT (positive) response primitive provokes the emission of
an FPDU.ACONNECT in the user data field of an S·ACCEPT session
primitive for PeS IT .F or in the normal data stream.

The connection is now established and the PeSIT server unit attains the
"CONNECTED" state and may receive any of the service requests or
FPDUs authorised by the server procedures.

c) Receiving an FPDU.ACONNECT

The reception of an FPDU.ACONNECT validated by the calling PeSIT
whilst in the "connection pending" state causes an F.CONNECT
confirmation primitive to be notified to the calling user. Since the
connection has been successfully established the calling PeSIT unit
attains the "CONNECTED" state and may receive any service requests or
FPDUs authorised by the calier procedure.

4.4.3 FPDU.RCONNECT

The FPDU.RCONNECT is used by the called PeSIT unit to refuse an attempt to
establish a PeSIT connection.

a) Contents of the FPDU.RCONNECT

The FPDU.RCONNECT contains all the paramaters of tha F.CONNECT
response primitive, plus:

* ID.SRC : FPDU originator's connection identification allocated by the
PeSIT server. Value equals zero since the connection is refused.

* ID.DST : FPDU receiver's connection identification. Equal to the ID.SRC
parameter received in the FPDU.CONNECT.

b) Sending the FPDU.RCONNECT

The F.CONNECT (refusal) response primitive provokes the emission of
an FPDU.RCONNECT in the usar data field of an S-REFUSE session
primitive for a PeSIT.F server or in the normal data stream by N*DATA
for a PeSIT.F' server. No PeSIT connection is established.

c) Receiving an FPDU.RCONNECT

The reception of an FPDU.RCONNECT validated by tha calling PaSIT
whilst in the "connection pending" state causes an F.CONNECT (refusal)
confirmation primitive to be notified to the calling user and:

- the PeSIT calier returns to the "Idle" state,

the PeSIT.F caller requests a network service disconnection (N
DISCONNECT) and raturns to the "Idle" state.

..

JULY 1989 PeSIT VERSION 1 CHAPTER 4 90

4.4.4 FPDU.CREATE

F..CREATE,D

F.CREATE.C

The FPOU.CREATE is always sent by the PeSIT caller, once in the ~connected·
state, when it wishes to create a file upon the corresponding PeSIT server
machine in order to carry out a write file transfer. The file is completely
identified by the "file identifier" parameter.

PeSIT PeSIT
caller server

"Connected" state

FPDU.CREATE F..CREATE,I .. .-
FPDU.ACK(CREATE) F.CREATE,R ..

"File selected" state

a) Contents of the FPDU.CREATE

The FPDU.CREATE contains all the parameters of the F.CREATE
primitive, plus :

10.OST : FPOU receiver's connection identification.

b) Sending the FPDU.CREATE

An F.CREATE request primitive provokes the emission by the PeSIT unit
of an FPDU.CREATE in the normal data stream of the "communication
system". The calling PeSfT unit attains the "Fife creation pending" state.

c) Receiving an FPDU.CREATE

The reception of an FPDU.CREATE validated by the PeSfT server in the
"connected" state provokes a notification by an F .CREATE indication
primitive to be sent to the server user. The PeSIT unit attains the "file
creation pending" state.

4.4.5 FPDU.ACK(CREATE)

The FPDU.ACK(CREATE) is sent by the PeSIT server whilst in the "file
creation pending" state to indicate the acceptance or refusal of a fife creation
for the transfer. The "diagnostic" parameter in the FPOU indicates the exact
reason for a refusal if the fife creation was not possible.

a) Contents of the FPDU.ACK(CREATE)

The FPDU.ACK(CREATE) contains all the parameters of the F.CREATE
response primitive, plus :

10.D8T : FPDU receiver's connection identification.

....

JULY 1989 PeSIT VERSION 1 CHAPTER 4 92

c) Receiving an FPDU.SELECT

The reception of an FPDU.SELECT validated by the PeS IT server in the
"connected" state provokes a notification by an F .SELECT indication
primitive to be sent to the server user. The PeS IT unit attains the "file
selection pending" state.

4.4.7 FPDU.ACK(SELECT)

The FPDU.ACK(SELECT) is sent by the PeS IT server whilst in the "file
creation pending" state to indicate the acceptance or refusal of a file creation
for the transfer. The "diagnostic" parameter in the FPOU indicates the exact
reason for a refusal if the file creation was not possible.

a) Contents of the FPDU.ACK(SELECT)

The FPDU.ACK(SELECT) contains all the parameters of the F.SELECT
response primitive, plus:

10.OST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(SELECT)

An F.SELECT response primitive provokes the emission by the PeSIT
server whilst in the "file selection pending" state of an
FPDU.ACK(SELECT) in the normal data stream of the "communication
system". If the "diagnostic" parameter of the F.SELECT response
primitive indicates "success", the PeSIT server attains the "file
selected" state. Otherwise, the PeS IT server returns to the
"CONNECTED" state.

c) Receiving en FPDU.ACK(SELECT)

The reception of an FPDU.ACK(SELECT) validated by the PeSIT caller in
the "file selection pending" state provokes a notification by an F.SELECT
confirmation primitive to be sent to the calier user. If the "diagnostic"
parameter indicates "success", the PeSIT calier attains the "file
selected" state, otherwise it returns to the "CONNECTED" state.

4.4.8 FPDU.DESELECT

The FPDU.DESELECT is always sent by the PeS IT caller whilst in the "file
selected" state to request the release of a file which was previously selected
for the transfer.

F.DESELECT. D

F.DESELECT, C

PeS IT
caBer

"File selected" state

FPDU.DESELECT

FPDU.ACK(DESELECT)

"Connected" state

PeSIT
server

F.DESELECT, I

F.DESELECT, R
•

JULY 1989 PeSIT VERSION 1 CHAPTER 4 93

a) Contents of the FPDU.DESELECT

Tha FPDU.DESELECT contains all the paramaters of the F.DESELECT
request primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.DESELECT

An F .DESELECT request primitive provokes the emission by the PeSIT
caller whilst in the "file selected" state of an FPDU.DESELECT in the
normal data stream of the "communication system". The PeSIT unit
attains the "File release pending" state.

c) Receiving an FPDU.DESELECT

Tha reception of an FPDU.DESELECT validatad by the PeS IT sarver In tha
"file selected" state provokes a notification by an F .DESELECT indication
primitive to be sent to the server user. The PeSIT unit attains the "file
release pending" state.

4.4.9 FPDU.ACK(DESELECT)

The FPDU.ACK(DESELECT) is always sent by tha PeSIT server whilst in the
"file release pending" state to indicate the result of the execution of the file
release request. The "diagnostic" parameter of the FPDU indicates the exact
reason in case of a failure.

a) Contents of the FPDU.ACK(DESELECT)

The FPDU.ACK(DESELECT) contains all tha paramaters of the
F.DESELECT response primitive, plus:

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(DESELECT)

An F.DESELECT response primitive provokes the emission by the PeSIT
server whilst in the "file selection pending" state of an
FPDU.ACK(DESELECT) in the normal data stream of the "communication
system". The PeSIT server returns to the "connected" state.

c) Receiving an FPDU.ACK(DESELECT)

The reception of an FPDU.ACK(DESELECT) validated by tha PeSIT calier
in the "file release pending" state provokes a notification by an
F.DESELECT confirmation primitive to be sent to the caller user. and the
PeS IT returns to the "connected" state.

JULY 1989 PeSIT VERSON1 CHAPTER 4 94

4.4.10 FPDU.DRF

The FPDU.ORF is always sent by the PeSIT caller whitst in the "file selected"
state to request that the distant file be opened.

a) Contents of the FPDU.ORF

The FPDU.ORF contains all the parameters of the F.ORF resquest
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ORF

An F .OPEN request primitive provokes the emission by the PeS IT caller
whitst in the "file selected" state of an FPDU.ORF in the normal data
stream of the "communication system". The PeS IT unit attains the "File
open pending" state.

c) Receiving an FPDU.ORF

The reception of an FPDU.ORF validated by the PeSIT server in the "file
selected" state provokes a notification by an F.OPEN indication primitive
to be sent to the server user. The PeS IT unit attains the "file open
pending" state.

4.4.11 FPDU.ACK(ORF)

The FPDU.ACK{ORF) is always sent by the PeS IT server whitst In the "file
open pending" state to indicate the result of the file open request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK(ORF)

The FPDU.ACK(ORF) contains all the parameters of the F.OPEN response
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(ORF)

An F.OPEN response primitive provokes the emission by the PeS IT
server of an FPDU.ACK(ORF) in the normal data stream of the
"communication systemM

• The PeSIT server attains the state:

• of "data transfer - idle" if the "diagnostic" indicates "success",

- of "file selected" in all other cases.

....

JULY 1989 PoSIT VERSkJN 1 CHAPTER 4 95

c) Receiving an FPDU.ACK(ORF)

The reception of an FPDU.ACK(ORF) validated by the PeSIT caller in the
utile open pending" state provokes a notification by an F.OPEN
confirmation primitive to be sent to the caller user. and the PeSIT
attains the state :

- of "data transfer - idle" if the "diagnostic~ indicates "success",

- of "file selected" in all other cases.

4.4.12 FPDU.CRF

F.CLOSE.D

F.CLOSE.C

The FPDU.CRF is always sent by the PeSIT caller whilst in the "data transfer
- idle" state to request file closure.

PeS IT
caller

"Data transfer - idle" state

FPDU.CRF

FPDU.ACK(CRF)

"File selected" state

a) Contents of the FPDU.CRF

PeSIT
server

....
F.CLOSE.i

F.CLOSE.R

The FPDU.CRF contains all the parameters of the F.CLOSE request
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.CRF

An F.CLOSE request primitive provokes the emission by the PeSIT caller
whilst in the "data transfer· idle" state of an FPDU.CRF in the normal
data stream of the "communication system". The PeSIT unit attains the
"File close pending" state.

c) Receiving an FPDU.CRF

The reception of an FPDU.CRF validated by the PeS IT server in the "data
transfer - idle" state provokes a notification by an F.CLOSE indication
primitive to be sent to the server user. The PeSIT unit attains the "file
close pending" state.

...

JULY 1989 PeSIT VERSkJN 1 CHAPTER 4 96

4.4.13 FPDU.ACK(CRF)

The FPDU.ACK(CRF) is always sent by the PeSIT selVer whilst in the "file
close pending" state to indicate the result of the file close request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK(CRF)

The FPDU.ACK(CRF) contains ali the parameters of the F.CLOSE
response primitive, plus :

10.OST : FPOU receiver's connection identification.

b) Sending the FPDU.ACK(CRF)

An F .CLOSE response primitive provokes the emission by the PeS IT
server of an FPOU.ACK(CRF) in the normal data stream of the
"communication system". The PeSIT server returns to the "file selected"
state.

c) Receiving an FPDU.ACK(CRF)

The reception of an FPDU.ACK(CRF) validated by the PeSIT calier in the
"file close pending" state provokes a notification by an F.CLOSE
confirmation primitive to be sent to the caller user and the PeSIT
returns to the "file selected" state.

4.4.14 FPDU.READ

F.READ,D

F.READ,C

The FPOU.REAO is always sent by the PeSIT caller whilst in the "data
transfer - idle" state to request the beginning of a read data transfer. 11 is
during this phase that the recovery point is negotiated for a recovered
transfer.

PeSIT
caller

"Data transfer - idle" state

FPDU.READ

FPDU.READ(CRF)

"File read" state

a) Contents of the FPDU.READ

PeSIT
server

...
F.READ,J

F.READ,R

The FPDU.READ contains all the parameters of the F.REAO request
primitive, pius :

ro.DST : FPDU receiver's connection identification.

JULY 1989 PaSIT VERSON 1 CHAPTER 4 97

b) Sending the FPDU.READ

An F.READ request primitive provokes the emission by the PeSIT caller
whilst In the "data transfer - idle" state of an FPDU.READ in the normal
data stream of the "communication system". The PeSIT unit attains the
"File read pending" state.

c) Receiving an FPDU.READ

The reception of an FPDU.READ validated by the PeS IT server in the
"data transfer - idle" state provokes a notification by an F.READ
indication primitive to be sent to the server user. The PeSIT unit attains
the "file read pending" state.

4.4.15 FPDU.ACK(READ)

The FPDU.ACK(READ) is always sent by the PeSIT server whilst in the "file
read pending" state to indicate the result of the file read request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK(READ)

The FPDU.ACK(READ) contains all the parameters of the F.READ
response primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(READ)

An F .READ response primitive provokes the emiSSion by the PeSIT
server of an FPDU.ACK(READ) in the normal data stream of the
"communication system". The PeSIT server attains the "read file" state
if the "diagnostic" code indicates "success", otherwise it returns to the
"data transfer - idle" state.

c) Receiving an FPDU.ACK(READ)

The reception of an FPDU.ACK(READ) validated by the PeS IT caller in
the "file read pending" state provokes a notification by an F.READ
confirmation primitive to be sent to the caller user. and the PeSIT
attains the "read file" state if the "diagnostic" code indicates "success",
otherwise it returns to the "data transfer - idle" state.

..

JULY 1989 PeSIT VERSkJN 1 CHAPTER 4 98

4.4.16 FPDU.WRITE

F.WRITE, D

FWRlTE,C

The FPDU.WRITE is always sent by the PeSIT caller whilst in the "data
transfer - idle" state to request the beginning of a write data transfer. It is
during this phase that the recovery point is negotiated for a recovered
transfer.

PeS IT
caller

"Data transfer. idle" state

FPDU.WRlTE

FPDU.ACK(WRITE)

"File write" state

a) Contents of the FPDU.WRITE

PeS IT
server

..
F.WRlTE,I

F.wRlTE,R

The FPOU.WRITE contains all the parameters of the F.WRITE request
primitive, plus :

10.OST : FPDU receiver's connection identification.

b) Sending the FPDU.WRITE

An F.WRITE request primitive provokes the emission by the PeS IT
caller whilst in the "data transfer - idle" state of an FPDU.WRITE in the
normal data stream of the "communication system". The PeS IT unit
attains the "File write pending" state.

c) Receiving an FPDU.WRITE

The reception of an FPDU. WRITE validated by the PeSIT server in the
"data transfer - idle" state provokes a notification by an F.WRITE
indication primitive to be sent to the server user. The PeSIT unit attains
the "file write pending" state.

4.4.17 FPDU.ACK(WRITE)

The FPDU.ACK(WRITE) is always senl by Ihe PeSIT server whilsl in the
"file write pending" state to indicate the result of the file write request. The
"diagnostic" parameter of the FPDU indicates the exact reason in case of a
failure.

a) Contents of the FPDU.ACK(WRITE)

The FPDU.ACK(WRITE) conlains all Ihe paramelers of Ihe F.wRITE
response primitive, plus :

10.OST : FPDU receiver's connection identification.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 99

b) Sending the FPDU.ACK(WRITE)

An F.WRITE response primitive provokes the emiSSion by the PeS IT
server of an FPDU.ACK(WRITE) in the normal data stream of the
"communication system". The PeSIT server attains the "write file" state
if the "diagnostic" code indicates "success", otherwise it returns to the
"data transfer - idle" state.

c) Receiving an FPDU.ACK(WRITE)

The reception of an FPDU.ACK(WRITE) validated by the PeSIT caller in
the "file write pending" state provokes a notification by an F.WRITE
confirmation primitive to be sent to the caller user and the PeSIT
attains the "write file" state if the "diagnostic" code indicates "success",
otherwise it returns to the "data transfer - idle" state.

4.4.t8 FPDU.TRANS.END

The FPDU.TRANS.END is always sent by the PeSIT caller whilst in the "end of
read" or "end of write" state to request the end of a file data transfer.

PeSIT
caller

"End of write" or "End of
read" state

PeSIT
server

F.TRANSFER.END. D FPDU.1RANS.END F.TRANSFER.END. ~ •
F.TRANSFER.END, C FPDU.ACK(TRANS.END) F.TRANSFER.END, R

"Data tran fer - i I " s d estate

a) Contents of the FPDU.TRANS.END

The FPDU.TRANS.END contains all the parameters of the F.TRANS.END
request primitive, plus:

ID.OST : FPDU receiver's connection identification.

b) Sending the FPDU.TRANS.END

An F.TRANSFER.END request primitive provokes the emission by the
PeSIT caller whilst in the "end of read" or "end of write" state of an
FPOU.TRANS.END in the normal data stream of the "communication
system". The PeSIT unit attains the "end of write transfer pending" or
"end of read transfer pending" state.

c) Receiving an FPDU.TRANS.END

The reception of an FPDU.TRANS.END validated by the PeS IT server in
the "end of read" or "end of write" state provokes a notification by an
F.TRANSFER.END indication primitive to be sent to the server user. The
PeSIT unit attains the "end of write transfer pending" or "end of read
transfer pending"state.

JULY 1989 PeSIT VERSKJN 1 CHAPTER 4 100

4.4.19 FPDU.ACK(TRANS.END)

The FPDU.ACK(TRANS.END) is always sent by the PeSIT server whilst in the
"end of write transfer pending" or "end of read transfer pending" state to
indicate the result of the end of file transfer request. The "diagnostic"
parameter of the FPDU indicates the exact reason in case of a failure.

a) Contents of the FPDU.ACK(TRANS.END)

The FPDU.ACK(TRANS.END) contains all the parameters of the
F.TRANSFER.END response primitive, plus:

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(TRANS.END)

An F.TRANSFER.END response primitive provokes the emission by the
PeSIT server of an FPDU.ACK(TRANS.END) in the normal data stream of
the "communication system". The PeSIT server returns to the "data
transfer - idle" state .

c) Receiving an FPDU.ACK(TRANS.END)

The reception of an FPDU.ACK(TRANS.END) validated by the PeSIT caller
in the "end of write transfer pending" or "end of read transfer pending"
state provokes a notification by an F.TRANSFER.END confirmation
primitive to be sent to the caller user and the PeSIT returns to the "data
transfer - idle" state.

4.4.20 FPDU.DTF. FPDU.DTFDA. FPDU.DTFMA. FPDU.DTFFA

F.DATA,D

The FPDU.DTF. FPDU.DTF.DA. FPDU.DTF.MA. FPDU.DTF.FA are sent by the
PeSIT sender whilst in the "write file" or "read file" state to transfer the
file data.

4.4.20.1 FPDU.DTF single article

PeSIT
sender

The FPDU.DTF transport one and only one article from the file.

"Read file" or "Write file"
state

FPDU.DTF

PeSIT
receiver

a) Contents of the FPDU.DTF

F.DATA,I

The FPDU.DTF contains all the parameters of the F.DATA
request primitive (file article), plus :

ID.DST : FPDU receiver's connection identification.

JULY 1989

F.DATA,D

F.DATA,D

PeSIT VERSION 1 CHAPTER 4 101

b) Sending the FPDU.DTF

An F .DATA request primitive provokes the emission by the
Pe81T sender whilst in the "read file" or "write file" state of
an FPDU.DTF in the normal data stream of the
"communication system". The Pe81T unit remains in the same
state.

c) Receiving an FPDU.DTF

The reception of an FPDU.DTF validated by the Pe81T receiver
in the "read file" or "write file" state provokes a notification
by an F.DATA indication primitive to be sent to the receiver
user. The Pe81T unit remains in the same state.

4.4.20.2 FPDU.DTF multi article

PeSIT
sender

..

..

The FPDU.DTF transports several articles from the file.

a)

PeSIT
receiver

"Read file" or "Write file"
state

FPDU.DTF F.DATA, I • •
Contents of the FPDU.DTF multi article

The FPDU.DTF multi article contains all the parameters of
several F.DATA request primitives (several file articles),
plus:

ID.D8T : FPDU receiver's connection identification.

b) Sending the FPDU.DTF multi article

An F .DATA request primitive provokes the concatenation of
the article in the FPDU.DTF by the Pe81T sender whilst in the
"read file" or "write file" state, and may provoke the
emission of the FPDU.DTF in the normal data stream of the
"communication system". The number of articles and the
criteria which determine when the FPDU is sent are left up
to the choice of the protocol designer. The Pe81T unit remains
in the same state.

c) Receiving an FPDU.DTF multi article

The reception of an FPDU.DTF validated by the PeS IT receiver
in the "read file" or "write file" state provokes a notification
by an F.DATA indication primitive to be sent to the receiver
user. The PeSIT unit remains in the same state.

JULY 1989

F.DATA,D

PeSIT VERSION 1 CHAPTER 4 102

4.4.20.3 Segmentation of articles

PoSIT
sender

~

Once the size of the article to be transported is greater than the
maximum size supported by an FPDU ("maximum size of a data
element" less the FPDU header size), the article can be
segmented and transported in several FPDUs :

- an FPDU.DTF.DA (beginning of the article),

- zero or more FPDU.DTF.MA (middle of an article) •

. an FPDU.DTF.FA (end of article).

"Read me" or "Write file"
state

FPDU.DTF.DA

FPDU.DTF.MA

PcSIT
receiver

~ ..
from 0 to n FPDU.DTF.MA

FPDU.DTF.MA ..
FPDU.DTF.FA

~
F.DATA,I ..

a) Contents of the FPDU.DTF.DA, FPDU.DTF.MA,
FPDU.DTF.FA

The FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA each
contain a fraction of the contents of the F.DATA request
primitive. plus :

10.OST : FPDU receiver's connection identification.

b) Sending the FPDU.FPDU.DTF.DA, FPDU.DTF.MA,
FPDU.DTF.FA

An F.DATA request primitive provokes the emission by the
PeSIT sender whilst in the "read file" or "write file" state
of an FPDU.DTF.DA, a zero or greater number of
FPDU.DTF.MA, and an FPDU.DTF.FA in the normal data
stream of the "communication system". The PeS IT unit
remains in the same state.

c) Receiving an FPDU.DTF.FA

The reception of an FPDU.DTF validated by the PeS IT
receiver in the "read file" or "write file" state provokes a
notification by an F.DATA indication primitive to be sent to
the receiver user. The PeSIT unit remains in the same state.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 103

4.4.21 FPDU.DTF.END

The FPDU.DTF.END is always sent by the PeSIT sender whilst in the "write
file" or "read file" state to indicate the end of file data transfer. The
"diagnostic" parameter of the FPDU indicates the exact reason for the end
of transfer.

PeS IT
sender

"Write file" or "Read tile"
state

PeSIT
receiver

__ --...:F~.D:::.A:.:.T.:.:A_',_'D:...._ __ j------'FP=D::.U=.D...:TF.::.----- F.DATA, I .. 1---..:..;;'-'.:.:..:..:;_-<
F.DATA.END. D FPDU.DTF.END

"End of read" or "End of
write" state

a) Contents of the FPDU.DTF.END

F.DAT A.END. I

The FPDU.DTF.END contains all the parameters of the F.DATA.END
request primitive, plus:

JD.DST : FPDU receiver's connection identification.

b) Sending the FPDU.DTF.END

An F.DATA.END request primitive provokes the emission by the PeSIT
sender whilst in the "read file" or "write file" state of an
FPDU.DTF.END in the normal data stream of the "communication
system". The PeS IT unit attains the "end of read" or "end of write"
state.

c) Receiving an FPDU.DTF.END

The reception of an FPDU.DTF.END validated by the PeS1T receiver in
the "read file" or "write file" state provokes a notification by an
F.DATA.END indication primitive to be sent to the receiver user. The
PeSIT unit attains the "end of read" or "end of write" state.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 104

4.4.22 FPDU.SYN

The FPDU.SYN is always sent by the PeSIT sender whilst in the "write file"
or "read file" state to request the setting of checkpoints.

PeSIT
sender

"Write file" or "Read file"
state

PeSIT
receiver

F.DATA, D FPDU.DTF F.DATA, I
----~~~--~~-------------------~·~I-----~~~~~~

F.CHECK,D FPDU.SYN F.CHECK,I

a) Contents of the FPDU.SYN

The FPDU.SYN contains all the parameters of the F.CHECK request
primitive, pius :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.SYN

An F.CHECK request primitive provokes the emission by the PeSIT
sender of an FPDU.SYN in the normal data stream of the
"communication system". The PeSIT unit remains in the same state.

c) Receiving an FPDU.SYN

The reception of an FPDU.SYN validated by the PeSIT receiver in the
"read file" or "write file" state provokes a notification by an F.CHECK
indication primitive to be sent to the receiver user. The PeS IT unit
remains in the same state.

d) Note

The FPDU.SYN should be sent between articles from the file. This
implies that if article segmentation is used then the FPDU.SYN should
only be placed after an FPDU.DTF.FA and prior to an FPDU.DTF.DA.

..

JULY 1989 PeSIT VERSON1 CHAPTER 4 105

4.4.23 FPDU.ACK(SYN)

F.DATA,D

F.CHECK,D

F.CIlECK,C

The FPDU.ACK.8YN is always sent by the Pe81T receiver whilst in the
"write file" or "read file" state to acknowledge the checkpoints set
previously_

PeSIT
sender

"Write file" or "Read file"
state

FPDU.DTF

FPDU.SYN

FPDU.ACK(SYN)

a) Contents of the FPDU.ACK(SYN)

PeSIT
receiver

.-

.-

F.DATA,I

F.CIlECK, I

F.CIlECK,R

.-

.-

The FPDU.ACK(SYN) contains all the parameters of the F.CHECK
response primitive, plus :

10.08T : FPOU receiver's connection identification.

b) Sending the FPDU.ACK(SYN)

An F.CHECK response primitive provokes the emission by the PeS IT
receiver of an FPOU.ACK(SYN) in the normal data stream of the
"communication system". The PeSIT unit remains in the same state. For
PeSIT.F, the FPDU.ACK(SYN) is sent in the typed data stream of the
session layer (5· TYPED· DATA).

c) Receiving an FPDU.ACK(SYN)

The reception of an FPOU.8YN validated by the PeSIT sender in the
"read file" or "write file" state provokes a notification by an F.CHECK
confirmation primitive to be sent to the sender user. The PeS1T unit
remains in the same state.

JULY 1989 PeSIT VERSON1 CHAPTER 4 106

4.4.24 FPDU.RESYN

The FPDU.RESYN is sent by the PeS IT sender or receiver whilst in the
"write file" or "read file" state to request that a transfer be restarted from
a previously set checkpoint.

PeSIT

"Write file" or "Read file"
state

PeSIT

F.RESTART, D FPDU.RESYN � __ ---=.F.::.RES=~T:.: A:.:RT",,:.:I_<~
-----=..::.::~~.:c:.:~~'"i·-----------~~~I- ~

F.RESTART, C ... FPDU.ACK(RESYN)

"End of read" or "End of
write" state

a) Contents of the FPDU.RESYN

F.RESTART, R ...

The FPDU.RESYN contains all the parameters of the F.RESTART request
primitive, plus :

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.RESYN

An F .RESTART response primitive provokes the emission by the PeSIT
sender or receiver of an FPDU.RESYN in the normal data stream of the
"communication system". The PeS IT unit attains the "restart pending"
state.

c) Receiving an FPDU.RESYN

The reception of an FPDU.RESYN validated by the PeS IT sender or
receiver in the "read file" or "write fife" state provokes a notification
by an F.RESTART indication primitive to be sent to the user. The PeSIT
unit attains the "restart pending" state.

4.4.25 FPDU.ACK(RESYN)

The FPDU.ACK.RESYN is sent by the PeSIT sender or receiver whilst in the
"restart pending" state to acknowledge the restart.

a) Contents of the FPDU.ACK(RESYN)

The FPDU.ACK(RESYN) contains all the parameters of the F.RESTART
request primitive, plus:

lD.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(RESYN)

An F.RESTART response primitive provokes the emission by PeSIT of
an FPDU.ACK(RESYN) in the normal data stream of the "communication
system". The PeSIT unit returns to the "read file" or "write file" state.

JULY 1989 PeSIT VERSON1 CHAPTER 4 107

c) Receiving an FPDU.ACK(RESYN)

The reception of an FPDU.ACK(RESYN) validated by PeSIT in the
"restart pending" state provokes a notification by an F.RESTART
confirmation primitive to be sent to the user. The PeSIT unit returns
to the "read file" or "write file" state.

4.4.26 FPDU.RELEASE

F.RELEASE, D

In the same way as the FPDU.CONNECT, the FPDU.RELEASE is always sent
by the PeSIT caller whilst in the "connected" state to request connection
shut-down.

PeSIT
caller

"Connected" state

FPDU.RELEASE

PeSIT
receiver

F.RELEASE, I

F.RELEASE, C F.RELEASE, R
-.--------~----I-·-----------------------I~.~-------------

FPDU.RELCONF

"Idle" state

a) Contents of the FPDU.RELEASE

The FPDU.RELEASE contains all the parameters of the F.RELEASE
request primitive, plus :

ID.DST : FPDU receiver's connection identification.

ID.SRC : FPDU sender's connection identification.

b) Sending the FPDU.RELEASE

An F.RELEASE request primitive provokes the emission by the PeS IT
caller of an FPDU.RELEASE in :

. the user field of the session end request primitive S-RELEASE, by
PeSIT.F,

. the normal data stream of the N-DATA network service by PeSIT.F'.

The PeSIT unit attains the "liberation pending" state.

c) Receiving an FPDU.RELEASE

The reception of an FPDU.RELEASE validated by PeSIT in the
"connected" state provokes a notification by an F.RELEASE indication
primitive to be sent to the user. The PeSIT unit attains the "liberation
pending" state.

JULY 1989 PeSIT VERSION 1 CHAPTER 4 108

4.4.27 FPDU.RELCONF

The FPDU.RELCONF is always sent by the PeSIT server whilst in the
"liberation pending" state to acknowledge release of the connection.

a) Contents of the FPDU.RELCONF

The FPDU.RELCONF contains all the parameters of the F.RELEASE
request primitive, plus:

ID.DST : FPDU receiver's connection identification.

ID.SRC : FPDU sender's connection identification.

b) Sending the FPDU.RELCONF

An F.RELEASE request primitive provokes the emission by the PeSIT
server of an FPDU.RELCONF in:

- the user field of the session end response primitive S-RELEASE by
PeSIT.F.

- the normal data stream of the N-DATA network service by PeSIT.F',
and the arming of the protocol monitoring time-out Tr (See 4.5.2).

The PeSIT unit returns to the "idle" state.

c) Receiving an FPDU.RELCONF

The reception of an FPDU.RELCONF validated by the PeS IT caller in the
"liberation pending" state provokes a notification by an F.RELEASE
indication primitive to be sent to the calling user. The PeSIT unit
returns to the "idle" state as well as requesting network service shut
down with the N·DISCONNECT primitive by PeSIT.F·.

4.4.28 FPDU.ABORT

EABORT.D

The FPDU.ABORT may be sent by a PeSIT caller or server at any time
during the dialogue to indicate the abrupt termination of a connection. The
"diagnostic" parameter provides the reason for terminating.

Abrupt termination requested by the user (caller/server).

PeSIT PeSIT

Any state

FPDU.ABORT F.ABORT.!

JULY 1989

F.ABORT, I

PeSIT VERSION 1 CHAPTER 4 109

- Abrupt termination requested by PeSIT or the "communication system".

PeSIT PeSIT

Any state

FPDU.ABORT F.ABORT,I

a) Contents of the FPDU.ABORT

The FPDU.ABORT contains all the parameters of the F.ABORT primitive,
pius:

10.OST : FPOU receiver's connection identification.

ID.SRC : FPDU sender's connection identification.

b) Sending the FPDU.ABORT

- The reception by PeSIT of an F.ABORT request primitive,

- or PeS1T detecting a class 3 error (see Annexe D),

- or an N-RESET indication being received by PeSIT.F' from the
network layer,

provoke the emission by PeS1T of an FPDU.ABORT in :

- the user field of the session service primitive S-ABORT by PeS IT .F
and a return to the "idle" state,

- the normal data stream of the N-DATA network service by PeSIT.F',
followed by arming of the protocol monitoring time-out Tr (See
4.6) .

The PeSIT user is systematicaly notified by an F.ABORT indication
primitive.

c) Receiving an FPDU.ABORT

The reception of an FPDU.ABORT by PeSIT causes the user to be notified
by an F .ABORT indication primitive and:

- for PeSIT to return to the "idle" state,

- and network service shut-down to be requested with the N
DISCONNECT primitive by PeSIT.F'.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 110

4.4.29 FPDU.IDT

The FPDU.IDT is sent by the PeSIT caller or selVer whilst in the "write
file" or "read file" state to request the interruption of a transfer. The end
of transfer code indicates why the transfer was interrupted:
"cancelled", "suspended" or "error".

PeSIT Pesrr

"Read or write file" state

__ ~F~.C=AN~CE==L~.D~ __ ~I __________ FP_D_U __ .ID_T ________ ~~I ____ ~F~.C=A~N~CEL==~.~I~~~
F.CANCEL. C FPDU.ACK(IDT) F.CANCEL. R ..

"Data transfer - idle" state

a) Contents of the FPDU.IDT

The FPDU.IDT contains all the parameters of the F.CANCEL primitive,
pius:

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.lDT

An F .CANCEL request primitive provokes the emission by the PeS IT
sender or receiver of an FPDU.IDT to request interruption of the
current transfer. The PeSIT unit attains the "transfer interruption
pending" state.

Typed data is used by the PeSIT.F session service.

c) Receiving an FPDU.IDT

The reception of an FPDU.IDT validated by PeSIT in the "read file" or
"write file" state provokes a notification by an F.CANCEL indication
primitive to be sent to the user. The PeS IT unit attains the "transfer
interruption pending" state.

4.4.30 FPDU.ACK(IDT)

The FPDU.ACK{IDT) is sent by the PeS IT sender or receiver whilst in the
"transfer interruption pending" state to acknowledge the transfer
interrupt request.

a) Contents of the FPDU.ACK(IDT)

The FPDU.ACK(IDT) contains ali the parameters of the F.CANCEL
response primitive, plus :

JD.DST : FPDU receiver's connection identification.

JULY 1989 PeSIT VERSON1 CHAPTER 4 111

b) Sending the FPDU.ACK(IDT)

An F.CANCEL response primitive provokes the emission by PeS IT of an
FPDU.ACK(IDT). The PeSIT unit returns to the "data transfer· idle"
state.

Typed data is used by the PeSIT.F session service.

c) Receiving an FPDU.ACK(IDT)

The reception of an FPDU.ACK(IDT) validated by PeSIT in the "transfer
interrupt pending" state provokes a notification by an F.CANCEL
indication primitive to be sent to the user. The PeSIT unit returns to
the "data transfer· idle" state.

4.4.3t FPDU.MSG, FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGFM

F.MESSAGE. D

F.MESSAGE C

The FPDU.MSG is always sent by the PeSIT caller whilst in the "connected"
state to request transmission of a datagram to another PeSIT server unit
without entering the file transfer mode.

PeSIT
caller

...
4.4.31. t

"Connected" state

FPDU.MSG

FPDU.ACK(MSG)

"Connected" state

FPDU.MSG

PeSIT
selVer

• ..
a) Contents of the FPDU.MSG

F.MESSAGE, I
~

F.MESSAGE. R

The FPDU.MSG contains all the parameters of the
F.MESSAGE request primitive, plus:

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.MSG

An F.MESSAGE request primitive provokes the emission by
the PeS IT caller of an FPDU.MSG in the normal data
stream of the "communication system". The PeSIT calling
unit attains the "file release pending" state.

c) Receiving an FPDU.MSG

The reception of an FPDU.MSG validated by the PeSIT
server in the "connected" state provokes a notification by
an F.MESSAGE indication primitive to be sent to the user.
The PeSIT unit attains the "file release pending" state.

JULY 1989

EMESSAGE, D

PeSIT VERSON1 CHAPTER 4 112

4.4.31.2 Segmentation of Datagrams

PeSIT
sender

..

Once the size of the message to be transported is greater than
the maximum size supported by an FPDU ("maximum size of a
data element" less the FPDU header size), the message can be
segmented and transported in several FPOUs :

. an FPDU.MSGDM (beginning of the message),

- zero or more FPOU.MSGMM (middle of an message),

. an FPDU.MSGFM (end of message).

"Read tile" or "Write tile"
state

FPDU.MSGDM

FPDU.MSGMM

FPDU.MSGMM

FPDU.MSGFM

PoSIT
receiver

.-

.-
from 0 to n FPDU.MSG

.-

.- F.MESSAGE, I

MM

..
a) Contents of the FPDU.MSGDM, FPDU.MSGMM,

FPDU.MSGFM

The FPDU.MSGDM, FPDU.MSGMM, FPDU.MSGFM each
contain a fraction of the contents of the F.MESSAGE
request primitive, plus:

10.DST : FPDU receiver's connection identification.

b) Sending the FPDU.FPDU.MSGDM, FPDU.MSGMM,
FPDU.MSGFM

An F.MESSAGE request primitive provokes the emission
by the PeSIT caller whilst in the "connected" state of an
FPDU.MSGOM, a zero or greater number of
FPDU.MSGMM, and an FPDU.MSGFM in the normal data
stream of the "communication system". The PeS IT unit
remains in the same state.

c) Receiving an FPDU.MSGFM

The reception of an FPDU.MSGFM validated by the PeSIT
server in the "connected" state provokes a notification by
an F.MESSAGE indication primitive to be sent to the
server user. The PeS IT unit attains the "file release
pending" state.

JULY 1989 PeStT VERSkJN 1 CHAPTER 4 113

4.4.32 FPDU.ACK(MSG)

The FPDU.ACK(MSG) is always sent by the PeSIT server whilst in the "file
release pending" state to indicate the outcome of execution of the message
delivery request. The "diagnostic" parameter of the FPDU indicates the
exact reason in case of a failure. The FPDU.ACK(MSG) may itself contain a
message to be returned to the PeSIT calling station.

a) Contents of the FPDU.ACK(MSG)

The FPDU.ACK(MSG) contains all the parameters of the F.MESSAGE
response primitive, plus:

ID.DST : FPDU receiver's connection identification.

b) Sending the FPDU.ACK(MSG)

An F .MESSAGE response primitive provokes the emission by PeSIT of
an FPDU.ACK(MSG) in the normal data stream of the "communication
system". The PeS IT server unit returns to the "connected" state.

c) Receiving an FPDU.ACK(MSG)

The reception of an FPDU.ACK(MSG) validated by the PeSIT caller in
the "connected" state provokes a notification by an F.MESSAGE
confirmation primitive to be sent to the calling user. The PeSIT calling
unit returns to the "connected" state.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 114

4.5 CONCATENATION OF FPDUS

Some FPDUs may be concatenated into the basic data unit of the lower protocol layer
(NSDU, SSDU, ...), whithin the maximum size limit negotiated during the creation
or selection phase of the file.

This rule may be applied to the following FPDUs :

· FPDU.DTF

· FPDU.DTF.DA

· FPDU.DTF.MA

· FPDU.DTF.FA

· FPDU.DTF.END

· FPDU.SYN

4.6 PESIT PROTOCOL TIME·OUTS

To monitor the PeS IT protocol several time-outs exist.

1) Protocol monitoring time-out : Tp

One of the partners stops sending messages while the other is awaiting
something. This anomaly can be detected localy by a time-out function called
"protocol monitoring time-out" : Tp. The only solution in this case is to
terminate the connection with a diagnostic code which indicates that the
monitoring time-out has expired.

For the server, the protocol monitoring time-out Tp, is used to monitor the
activity of the oppposit PeSIT unit:

. waiting for an FPDU in the following list: ORF, READ, WRITE, DTF, DTF.DA,
DTF.MA, DTF.FA, DTF.END, SYN, RESYN, TRANS.END, CRF or DESELECT.

For the caller, the protocol monitoring time-out Tp is used to monitor the
replies of the opposit PeSIT unit to the above FPDUs, as well as the reply to an
FPDU CONNECT or RELCONF.

The length of this time-out as intended by the caller may be transmitted to the
server in the FPDU CONNECT (optional parameter with default value of 30
seconds).

2) Network disconnect time-out Tr (used by PeSIT.F')

* Normal disconnect case

The PeSIT.F' server arms the timer Tr and awaits the network server
disconnect indication primitive "N-DISCONNECT,I". If the network service
disconnect indication primitive is received then the timer Tr is disabled and
the PeSIT server returns to the "idle" state. If the timer Tr expires prior to
reception of this disconnect indication, the PeS IT server requests network
service disconnection using the N-DISCONNECT request primitive and
returns to the "idle" state.

JULY 1989 PeSIT VERSON1 CHAPTER 4 115

• F.ABORT service usage

If the F .ABORT service is invoked, the PeSIT unit which sent the FPDU.ABORT
arms the timer Tr and awaits the network server disconnect indication
primitive "N·DISCONNECT,I". If the timer Tr expires prior to reception of
this disconnect indication, the PeSIT unit which sent the FPDU.ABORT
requests network service disconnection using the N·DISCONNECT request
primitive and returns to the "idle" state. If the network service disconnect
indication primitive is received then the timer Tr is disabled and the PeS IT
unit returns to the "idle" state.

The time-out delay of the timer Tr (Network disconnect time-out) is related
to the service quality and depends on the local system implementation.

This timer should have a value of approximately 30 seconds.

3) FPDU-CREATE, SELECT or RELEASE (request) time-out : Td

This timer is used to allow a network connection to be used for several
transfers. Between two transfers, some time may go by without the connection
being released.

This timer should have a value of several minutes (greater than 5 minutes).

This timer is armed only by the server.

4) Connection setMup time-out : Tc

The timer Tc is armed by the server whilst a PeSIT.F' network connection has
been set-up to monitor the emission of an FPDU.CONNECT by the caller.

This timer should have a value of approximately 30 seconds.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 116

4.7 STRUCTURE AND CODING OF PESIT PROTOCOL UNITS (FPDU)

4.7.1 Structure of a protocol element

Note: in this paragraph, the word message is used as "protocol data unit".

Each PeSIT message is made up of two parts:

- a six byte message header.

- a variable length message body.

byte 1234567 n

fixed part variable part
message header message body

a) message header

The message header has the following structure:

Bytes 1 and 2
Total length of the message (header + body, in bytes).

Byte 3
Phase indicator:
40h : protocol element for the connection phase
OOh : FPDU.DTF, FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA
COh : other FPDUs

Byte 4
message type

Byte 5
Receiver's connection identification

Byte 6
- FPDU used during the connection phase:

- FPDU.DTF single article:
- FPDU.DTF multi article
. Other FPDUs :

Sender's connection
identification (ID.SRC)
o
number of articles N (N) 1)
o

In the following table, X denotes the callers connection identification and
Y denotes the server connection identification. X and Yare arbitrary non
zero numerical values, determined at connection time by the caller and
the server.

The coding Y/X indicates that the value to be used is Y if the FPDU is sent
by the PeSIT caller or X if the FPDU is sent by the PeSIT server.

JULY 1989 PeSIT VERSON1 CHAPTER 4 117

PHASE MESSAGE Byte 3 Byte 4 Byte 5 Byte 6

Connection FPDU.CONNECT 40h 20 0 X
FPDUACONNECT 40h 21 X Y
FPOU.RCONNECT 40h 22 X 0
FPDU.RELEASE 40h 23 Y X
FPDU.RELCONF 40h 24 X Y
FPDUABORT 40h 25 Y/X (1) XIV

File selection FPDU.CREATE COh 1 1 X 0
and release FPDU.ACK(CREATE) COh 30 X 0

FPDU.sELECT COh 1 2 Y 0
FPDU.ACK(SELECn COh 31 X 0
FPDU.DESELECT COh 1 3 Y 0
FPDU.MSG COh 1 6 Y 0
FPDU.MSGDM COh 1 7 Y 0
FPDU.MSGMM COh 1 8 Y 0
FPDU.MSGFM COh 1 9 Y 0
FPDU.ACK(MSG) COh 38 X 0

File opening FPDU.ORF COh 1 4 Y 0
and closing FPDU.ACK(ORF) COh 33 X 0

FPDU.CRF COh 1 5 Y 0
FPDU.ACK(CRF) COh 34 X 0

Beginning and FPDU.READ COh 01 Y 0
end of transfer FPDU.ACK(READ) COh 35 X 0

FPDU.wRITE COh 02 Y 0
FPDU.ACK(WRITE) COh 36 X 0
FPDU.TRANS.END COh 08 Y 0
FPDU.ACK(TRANS.END COh 37 X 0

Data transfer FPDU.DTF 0 00 Y/X 0 (single-article)
N (multi-articles)

FPDU.DTFDA 0 41 Y/X 0
FPDU.DTFMA 0 40 Y/X 0
FPDU.DTFFA 0 42 Y/X 0
FPDU.DTF.END COh 04 Y/X 0
FPDU.sYN COh 03 Y/X 0
FPDU.ACK(SYN) COh 38 Y/X 0
FPDU.RESYN COh 05 Y/X 0
FPDU.ACK(RESYN) COh 39 Y/X 0

Transfer FPDU.IDT COh 06 Y/X 0
interruption FPDU.ACK(IDT) COh 3A Y/X 0

(1) If an FPOU.ABORT is sent before the 10.08T is known, then the 10.08T field should be set to O.

--- - -------

JULY 1989 PaSIT VERSkJN 1 CHAPTER 4 118

b) message body

. FPDU.DTF, FPDU.DTF.DA, FPDU.DTF.MA, FPDU.DTF.FA

For these FPDUs, this field contains the file data.

- In a single article FPDU.DTF (such as in the SIT), this field contains
one complete article:

1 header (6 bytes) article

- In a multi-article FPDU.DTF, this field contains several articles:

header (6 bytes) 1 L 1 article 1

article1
length

(2 bytes)

I 1 article 2

article 2
length

- An article which is longer than the maximum size of the SSDU-DATA is
segmented into several FPDU comprised of :
an FPDU.DTF.DA (start of article), zero or more FPDU.DTF.MA (middle
article) and an FPDU.DTF.FA (end of article) :

LI_he_a_d_8r~,-_st_a_rt_o_f a_rt_"_,8_----'11 header I middle of article

FPDU.DTF.DA FPDU.DTF.MA

LI_he_a_d_8_r-+_m_'_dd_'8_0f_a_rt_',_'e_~1 LI_he_a_d_e_r-L __ e_nd_O_f_a_rt_'c_'e ____ -"

FPDU.DTF.MA FPDU.DTF.FA

. OTHER FPDUs

This field contains the message parameters, each identified by a PI
(parameter identifier) which are assembled together into parameter
groups, identified by a PGI (parameter group identifier). The PGI and PI
blocks should be ordered into a list sorted into increasing value of the PGI
and PI codes.

The method of representing the parameters is described hereafter.

JULY 1989 PeSIT VERSON 1 CHAPTER 4 119

4.7.2 Coding of the parameters

4.7.2.1 Coding conventions

a) PGI blocks

The PGI blocks contain, in the following order:

a} the PG field which identifies this group of parameters,

b} the II field which indicates the length of the associated
parameter field,

c) the parameter field which consists of :

- either a single parameter value (see note),
- or one or more PI blocks.

NOTE:
A PGI block which contains a single parameter is structurally
equivalent to a PI block.

b) PI blocks

The PI blocks consist of, in the following order:

a) the PI field which identifies the parameter,

b} the II field which indicates the length of the associated
parameter field,

c) the parameter field which contains the parameter value.

c) PI and PGI field identifier

The PI and PGI fields each include a byte which contains
respectively the PI or the PGI code. The PI and PGI codes are
expressed as decimal numbers as listed in §4. 7.3 and which
should be coded as binary numbers.

d) Length indicater field LI

The value of the II field is expressed as a binary number which
represents the length, in bytes, of the associated parameter
field (see note). A zero value is rejected by the protocol.

The length of the II field is variable. For parameter field
length comprised between 1 and 254 the length field is one
byte long.
So as to indicate parameter field lengths in excess of 254, but
less less 65536 bytes. the II field is extended to three bytes
long. The first field is coded as OxFF and the second and third
bytes should contain the length of the associated parameter
field, the most significant byte is the first of these two bytes.

NOTE:
The value of the II field does not include the length of the II
field itself.

-_.-------

JULY 1989 PeSIT VERSION 1 CHAPTER 4 120

Fixed part Variable part

LI I .. Value J PI I LI blu~1

TML * : 14 bytes. with 2 parameters, of 3
and 1 byte length.

I PGII LI I PI I LI I .. value.! PI I LI bl: I

TML*: 17 bytes, with 1 PGI containing 2 PI,
of 2 and 3 byte length.

TML" : 9 bytes, with 1 PGI and no PI, total
parameter length = 1.

" Total message length", TML

e) Representation of parameter values

To be able to describe the parameters completely, we must
first define the following value types which are used to code the
different parameters in the coding tables:

- C : String of characters. Unfixed length (within the limits
defined); the characters are coded using ASCII 7 bit code.
Right hand spaces are non-significant, completely space
filled value are illegal.

- N : Numerical. Unsigned binary integer.

- S : Symbolic. As N, an unsigned binary integer except that
the values have a particular significance. Length 8 bits .

. M : Bit mask. Byte or word in which each bit has a particular
significance. Length 8 or 16 bits. All undefined bits
should have a zero value. For bits corresponding to
particular options, a bit set to the value "1" indicates
that the option is requested, and the value "a" the
opposite.

JULY 1989 PeSIT VERSON1 CHAPTER 4 121

* 0 : Date and Time. These are coded according to the ISO 2014
and ISO 3307 standards: YYMMDD and hhmmss, in which
YY = year, MM = month, DD = day, hh = hour, mm =
minutes and ss = seconds. It is represented as a character
string 12 bytes long.

* A : Agregate (mixed). Composed of two or more of the above
value types (e.g. 2 zones * numerical and symbolic).

f) optimising the value field

It is recommended to use the minimum length possible for
variable length character strings expressing values.

The character strings should not contain unnecessary spaces
unless the field is of a fixed length.

For the numerical and symbolic data, all unused leftmost bits
with a zero value should be eliminated. Nevertheless, the
minimum length of a string is one byte.

g) omitting parameters

Certain parameters may be omitted. The different types are:

- obligatory parameters whose absence from an FPDU would
produce a protocol error.

- optional parameters where a implicit value is defined. This
value is underligned in the parameter description (§4.7.3).
If the parameter is omitted it will be considered to have this
value.

optional parameters without implicit values, which mayor
may not be present in an FPDU.

h) Repeating parameters

Unless specifically indicated in the service description, any
particular parameter should be present once and once only
within a given message. In an illegal repetition is made, only
the first instance is kept, and an error is notified.

JULY 1989 PaSIT VERSkJN 1 CHAPTER 4

4.7.2.2 List of the PGI and PI codes

The different PI codes used are:

PI Code

1
2
3
4
5
6
7

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

20
21
22
23
25
26
27
28
29

31
32
33
34
36
37
38
39

41
42

51
52

61
62
63
64

Parameter description

CRCusage
Diagnostics
Caller identification
Server identification
Access control
Version number
Option: checkpointing

File type
File name
Transfer identifier
Requested attributes
Recovered transfer
Data coding
Transfer priority
Recovery point
End of transfer code

Checkpoint number
Compression
Access type
Restarting
Maximum size of a data element
Protocol monitoring time-out
Number of data bytes
Number of articles
Diagnostic complements

Article format
Article length
File attributes
Use of the signature
SIT MAC
File Label
Key length
Key offset

Storage reservation unit
Maximum reserved space

Date and time of creation
Date and time of last access

Customer identifier
Bank identifier
File access control
Server date and time

122

JULY 1989 PeSIT

71
72
73
74
75
76
77
78
79

VERSON1 CHAPTER 4

Authentication type
Authentication elements
MAC computation type
MAC computation elements
Encryption type
Encryption elements
Digital signature type
MAC
Digital signature

Certificate 80
81
82
83

Acknowledgement of Digital signature
Second digital signature

91
92

Second certificate

Datagram
Free text

The different PGI codes used are:

TITLE PGICODE

File identifier 9

Logical attributes 30

Physical attributes 40

Historical attributes 50

PI

3
4

1 1
12

31
32
33
34
36
37
38
39

41
42

51
52

123

JULY 1989 PeSIT VERSlON 1 CHAPTER 4 124

4.7.3 Parameter descriptions

The following pages give the detaited coding of each parameter, profile by
profile. For each parameter the following information is given

• the name of the parameter,

- the coding type (C, N, S, M, D, A),

• the maximum length of the zone in bytes,

· the coding values allowed (a default value, if it exists, is underligned),

· the "optional" or "optional with default value" indication as defined in §
4.7.2. t g.

The parameter may also be :

· "conditional" : the parameter is mandatory if the condition is met and
should be omitted if the condition is not met,

"conditional with default value" : if the condition is met and the
parameter is absent then the default value will be used,

If none of these indications is given then the parameter is mandatory.

Note : when the format of a parameter is not described specifically for
the Secure Non-SIT profile, it is identical to the Non-SIT profile.

---------------- --------- --

JULY 1989

Type: 5

SIT

Prohibited

NON-SIT

o - eRe not used

1 = CRe used

PeSIT VERSION 1 CHAPTER 4

CRC USAGE

Length : 1 optional parameter with default value

125

1

Use of the CRG is mandatory when PeSIT.F' is used with an asynchronous access pOint (PAD).

ETEBA-CC5--

Idem NON-SIT

SIT

JULY 1989 PeSIT

DIAGNOSTICS

Type: A Length 3

Diagnostics (see ANNEXE DJ
Byte1: error type
Bytes 2-3 : diagnostic code

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

VERSION 1 CHAPTER 4 126

2

JULY 1989 PeSIT VERSON 1 CHAPTER 4 127

CALLER IDENTIFICATIQN 3

Optional parameter except in the FPDU.CONNECT

SIT

Type: A Length : 3

Byte 1 (S) : application type
value:: 1 : CTE
value:: 2 : CTR
value = 3 : IE
value = 4 : IR

Bytes 2 and 3 (N) : Application number (assigned by the Control Center)

NON-SIT

Type: C Length : 24

Caller Identification (cf annexe B : mode store and forward, for more information)

ETEBAC5

Type: C Length 24

Catter Identification :

Bytes 1 to 3 : identifier type (C)
value = ZZ:Z : mutually agreed
value = 005 : CFONB standard

Bytes 4 to 24 : identifier (C)

if standard Identifier:
corporate identifier

. service and individual identifier

JULY 1989 PeSIT VERSON 1 CHAPTER 4 128

SERVER IDENTIFICATION 4

Optional parameter except in the FPDU.CONNECT

SIT

Type: A length : 3

Byte 1 (S) : application type
value:: 1 : eTE
value = 2 : CTA
value :: 3 : IE
value", 4 : IR

Bytes 2 and 3 (N) : Application number (assigned by the Control Center)

NON-SIT

Type: C Length : 24

Server Identification (cf annexe B : mode store and forward, for more information)

ETEBA-C5-- ------------

Type: C length 24

Server Identification :

Bytes 1 to 3 : identifier type (C)
value = Zll : mutually agreed
value = 005 : CFONB standard
value = ZBF : Banque de France code (bank + branch)

Bytes 4 to 24 : identifier (C)

if standard identifier:
corporate identifier
service and individual identifier

JULY 1989 PeSIT VERSION 1

ACCESS CONTROL

SIT

Type: C Length : 2

Not used

NON-SIT

Type: C Length : 16

optional parameter.
Bytes 1 to 8 : current password
Bytes 9 10 16 : new password
(if bytes 9 10 16 are absent the password is not altered)

ETEBAC5

Idem NON-SIT.

CHAPTER 4 129

5

JULY 1989 PeSIT VERSON1 CHAPTER 4 130

VERSION NUMBER 6

Type N Length 1

SIT

Version number of PeSIT = 1

NON-SIT

Version number of PeSIT

value 1 : version D of 15 novembre 1987 (November 15th 1987)

value 2 : version E of 14 juillet 1989 (July 14th 1989)

ETEBA-CS---

Idem NON-SIT

SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4

OPTION CHECKPQINTING

Type A Length 3 optional parameter with default value

Bytes 1 and 2 : interval between two checkpoints expressed in Kbytes (N)

Special Values:
Q no checkpoints
FFFF (hexadecimal) = unlimited interval
The smallest interval takes precedance over a larger or unlimited interval.

Byte 3 : window (N) (if bytes 1 and 2 are different from zero)
Special values:
Q = checkpoints are not acknowledged.

131

7

The interval between two checkpoints should be greater than or equal to 4 Kbytes. The window
should be less than or equal to 16.

NON-SIT

Bytes 1 and 2 : interval between two checkpoints expressed in Kbytes (N)

Speciaf Values:
o - 00 checkpoints
FFFF (hexadecimal) = unlimited interval
The smallest interval takes precedance over a larger or unlimited interval.

Byte 3 : window (N) (if bytes 1 and 2 are different from zero)
Special values :
o = checkpoi.1ts are not acknowledged.

ETEBAC5

Jdem NON-SIT

SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4 132

FILE TYPE 1 1

Type: N Length : 2

The list of all file types has been given exhaustively in the network specification documents of the
SiT.

NON-SIT

Type N Length : 2

Value = 0 : no specific action required from the file transfer monitor
Other values: used to specify a particular action required between two file transfer monitors

in an FPDU.MSG :

value FFFF ('Jexadecimal) : outgoing message
value FFFE (hexadecimal) : return message
other values: file reception acknowledgment

ETEBAC5

Type: C Length 8

Byte 1: coding type (C)
value = 0 : mutually agreed
value = 1 : CFONB standard

Byte 2: syntax type (C)
value = 0 : CFONB records
value;; 1 : EDIFACT messages

Bytes 3 to 7 : application nature (C) (cf. Annexe A2 of ~Data exchange between Banks and their
Corporate Customers")

Byte 8 : transfer nature (C)
value = 0 : data file
value = 1 : data file requesting an ETEBAC 5 execution order
value = 2 : execution order
value = 3 : execution report
value = 4 : bank confirmation
value = 5 : customer acknowledgment

JULY 1989 PeSIT VERSON 1 CHAPTER 4 133

FILE NAME 12

SIT

Type: C Length 5

Numerical ASCII string.

N-C)N~SIT--

Type: C Length : 76

Alphanumerical ASCII string.

ETEBA-CS---

Type: C Length : 14

Byte1: identifier type (C)
value = 0 : mutually agreed
value = 1 : CFONB standard

tDENTIFIER:
if standard identifier
Byte 2 : reference type (C)
value = 0 : reference by its name
value = 1 : request latest version
value = 2 : request non-transmitted versions
value = 3 : request all available versions

format 1 (type = 0)

Bytes 3 to t 4 : file reference (C)

format 2 (type = 1, 2, 3)
Bytes 3 to 8 : start date: YYMMOO (0)
Bytes 9 to 14 : end date : YYMMOO (0)

JULY 1989 PoSIT VERSJON 1 CHAPTER 4 134

TRANSFER IDENTIFIER 13

Type N Length 3

SIT

Numerical value chosen by the caller

N~cJN~SIT~~

In the FPDU.CREATE
Non zero numerical value chosen by the caller.
If the transfer has been recovered. the transfer identifier should be identical 10 that used for the
previous transfer try.

In the FPDU.ACK(CREATE) : optional parameter
Non zero numerical value chosen by the server.

In the FPDU.SELECT
Value .. 0 for a new transfer.
For a recovered transfer. the value was determined by the server during the previous transfer
try.

In the FPDU.ACK(SELECT)
Non zero numerical value chosen by the server.
(For a recovered transfer, identical value to that provided in the FPDU.SELECT).

ETEBA~C:5~~

Idem NON-SIT

JULY 1989 PeS!T VERS'ON 1 CHAPTER 4

REQUESTED ATTRIBUTES

Type M Length 1 optional parameter with default value

SIT

Not used

NON-SIT

The appropriate bit is set to 1 if the corresponding attributes are required:
b1 : logical attributes
b2 : physical attributes
b3 : historical attributes
b4-b8 : must be set to 0 and otherwise ignored.
default yalue no attrjbutes

In the FPDU.MSG :
value = 0 : no message expected in the FPDU.ACK(MSG)
value = 1 : message expected in the FPDU.ACK(MSG)

135

14

ETEBA-CS---

Idem NON-SIT

JULY 1989 PeSIT VERSON1 CHAPTER 4 136

RECOVERED TRANSFER 15

Type 5 Length 1 optional parameter with default value

SIT

o new transfer
1 : recovered transfer

NON-SIT

Idem SIT

ETEBA-CC5--

Idem SIT

JULY 1989

Type: S

SIT

Not used

NON-SIT

Type: S

o ASCII

1 = EBCDIC
2 = binary

PeSIT

DATA CODING

Length 1

Length : 1

> 2 : reserved for future use

VERSON 1 CHAPTER 4 137

1 6

optional parameter with default value

ETEBA-C5-- -------

Idem NON-SIT

JULY 1989 PeSIT VERSON 1

TRANSFER PRIORITY

SIT

Type: S Length 1

o = priority 0 (urgent)
1 = priority 1 (semi-urgent)
2 = priority 2 (least urgent)

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

CHAPTER 4 138

17

-----~ -~

JULY 1989 PeSIT VERSON1 CHAPTER 4 139

RECOVERY POINT 18

Type: N Length: 3

SIT

Recovery point (0 = beginning of the file)

NON-SIT

Idem SIT

ETEBA(;5--

Idem SIT

JULY 1989 PeSIT VERSkJN 1

END OF TRANSFER CODE

SIT

Type: S Length: 1

4 = error (a restart should follow)
8 = suspension
12 = annulation (by server)
16 = annulation (by caller)

NON·SIT

Idem SIT

ETEBAC5

Idem SIT

CHAPTER 4 140

19

JULY 1989 PeSIT VERSCN 1 CHAPTER 4 141

CHECKPOINT NUMBER 20

Type: N Length: l

SIT

Checkpoint number (O = beginning of the file)

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

JULY 1989 PeSIT VERSON 1 CHAPTER 4

CQMPRESSION

Type A length 2 optional parameter with default value

SIT

Not used

NON-SIT

Byte1: data compression

!l..=..nl2
1 = yes

Byte 2 : type of compression
1 = horizontal compression
2 = vertical compression
3 = combination of horizontal and vertical compression

ETEBAC5

Idem NON-SIT

142

21

JULY 1989

Type: 5

SIT

o = wri1e

NON· SIT

o = write
1 = read

PeSIT

ACCESS TYPE

Length 1

2 ;: mixed (read or write)

ETEBAC5

Idem NON-SIT

VERSkJN 1 CHAPTER 4 143

22

JULY 1989 PeSIT

RESTARTING

Type: 5 Length 1

SIT

Not used

NON·SIT

o - F,RESTART not autorised

1 = F,RESTART autorised

ETEBAC5

Idem NON-SIT

VERSON 1 CHAPTER 4 144

23

optional parameter with default value

JULY 1989 PeSIT VERSON1 CHAPTER 4 145

MAXIMUM SIZE OF A DATA ELEMENT 25

Type N Length 2

SIT

Maximum size of a data element measured in bytes. This length should be greater than 800 bytes.
A data element of 4050 bytes should be able to be supported.

NON-SIT

Maximum size of a data element measured in bytes.

ETEBAC5

Idem NON-SIT

JULY 1989 Pe$IT VERSON1 CHAPTER 4 148

PROTOCOL MONITORING TIME-OUT 26

Type N Length 2 optional parameter with default value

SIT

Prohibited

~~---------------------------~~-----------------------------------
NON-SIT

Not used

ETEBAC5

Protocol monitoring time-out (in seconds)
30 30 secoods

JULY 1989 PeSIT VERSON1 CHAPTER 4 147

NUMBER OF DATA BYTES 27

Type N Length 8 Optional parameter

SIT

Prohibited

NON-SIT

Number of data bytes (excluding the length field for multi·article FPDUs), and including the header
bytes of the compression string.
Mandatory parameter for PAD accesses.

ETEBAC5

Idem NON·SIT

JULY 1989 PeSIT VERSON 1 CHAPTER 4 148

NUMBER OF ARTICLES 28

Type N Length 4 optional parameter

SIT

Prohibited

N()N~SIT--

Number of articles
Mandatory parameter for PAD accesses.

ETEBA-CS---

Idem NON-SIT

JULY 1989 PeSIT VERSON 1

DIAGNOSTIC COMPLEMENTS

Type A Length 254 optional parameter

SIT

Prohibited

NON-SIT

Optional parameter of un-specified format

ETEBAC5

Format 1 (diagnostic", 310)
by tel: cause X25 (N)
byte 2 : diagnostic X25 (N)

Format 2 (diagnostic = 318)

by tel: number of incorrect Pis (N)
byte 2 : PI code (N)
byte 3 : error code (S)
value = 1 : PI absent
value = 2 : syntax error
value = 3 : unsupported value
value = 4 : value outside limit

bytes 4 to 23 : description

Format 3 (diagnostic = 321)

bytes 1 to 15 : backup number (N)

Format 4 (diagnostic = 322)
bytes 1 to 6 : call back wailing time: HHMMSS (0)

CHAPTER 4 149

29

JULY 1989 PeSIT VERSON1 CHAPTER 4 150

ARTICLE FORMAT 31

Type M Length 1 optional parameter with default value

SIT

yalue - 0 ; lixed
value = Ox80 (hexadecimal) ; variable

NON·SIT

Idem SIT

ETEBAC5

Idem SIT

JULY 1989 PeSIT VERSON 1 CHAPTER 4 151

ARTICLE LENGTH 32

Type: N Length 2

SIT

Length of an article (in bytes)

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

SIT

JULY 1999

Type: S

o - sequential
1 = relative
2 = indexed

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

PeSIT VERSION 1 CHAPTER 4 152

FILE ATTRIBUTES 33

Length 1 optional parameter with default value

SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4

USE OF THE SIGNATURE

Type N Length 2 optional parameter with default value

o "" no signature
1 '" file signed by the SIT
For transfers from the eTB to the station this parameter is absent or has a value"" 0
For transfers from the station to the GTB, value::: 1

NON-SIT

Not used

ETEBAC5

Not used

153

34

JULY 1989 PeSIT VERSION 1 CHAPTER 4 154

SIT MAC 36

Type N Length 64 conditional parameter

SIT

Present if the PI 34 value = 1

NON-SIT

Prohibited

ETEBAC5

Prohibited

JULY 1989 PeSIT VERSON 1 CHAPTER 4 155

FILE LABEL 37

Type: C Length 80 optional parameter

SIT

File label

NON·SIT

File label

ETEBAC5

File label

JULY 1989 PeSIT VERSON 1 CHAPTER 4 '56

KEY LENGTH 38

Type N Length 2 conditional parameter

SIT

Prohibited

NON-SIT

Parameter present if the file is indexed (PI 33 = 2).

ETEBA-CS---

Idem NON-SIT

JULY 1989 PeS1T VERSON 1 CHAPTER 4

KEY OFFSET

Type N Length: 2 conditional parameter with default value

SIT

Prohibited

NON-SIT

Offset in bytes of the key in the article.
Parameter present if the file is indexed (PI 33 = 2)
default yalue = 0

ETEBAC5

Idem NON-SIT

157

39

SIT

JULY 1989 PeSIT VERSON 1 CHAPTER 4

STORAGE RESERVATIQN UNIT

Type 5 Length 1

Storage reservation unit
o - Kbytes
1 = articles

optional parameter with default value

The storage reservation unit should be expressed in kilo-bytes if the file is variable format
(PI 31 = Ox80, hexadecimal)

NON-SIT

Idem SIT

ETEBAC5

Idem SIT

158

41

JULY 19B9 PeSIT VERSON1 CHAPTER 4 159

MAXIMUM RESERVED SPACE 42

Type: N Length 4

SIT--

Maximum reserved disk space

NON-SIT

Idem SIT

ETEBA-CS---

Idem SIT

JULY 1989 PoSIT VERSON1 CHAPTER 4 160

PATE AND TIME OF CREATION 51

Type 0 Length 12

SIT

Date and time of creation (the dates and times are those defined by the SIT, may differ from legal
date and time)
bytes 1 to 6 : date (YYMMDD)
bytes 7 to 12 : time (HHMMSS)

NON-SIT

Date and time of creation

ETEBAC5

Idem NON·SIT

SIT

JULY 1989 PeSIT VERSION 1 CHAPTER 4

DATE AND TIME OF LAST ACCESS

Type 0 Length 12

Date and time of the last access
bytes 1 to 6 : date (YYMMDD)
bytes 7 to 12 : time (HHMMSS)

optional parameter

161

52

N()N~SIT--

Idem SIT

ETEBA-C5---

Not used

JULY 1989 PeSIT VERSON 1 CHAPTER 4 162

CUSTOMER IDENTIFIER 61

Type: C Length 24

SIT

Prohibited

NON-SIT

optional parameter
Identifier of 1he initial sender (cf annexe B : mode store and forward, for more information)

ETEBAC5

mandatory parameter :

Customer identification :

Bytes 1 to 3 : identifier type (C)
value = Zll : mutually agreed
value = 005 : CFONB standard

Bytes 4 to 24 identifier (C)

if standard identifier
corporate identifier

. service and individual identifier

JULY 1989 PeS IT VERSON 1 CHAPTER 4

BANK IDENTIFIER

Type C Length 24

SIT

Prohibited

NON·SIT

optional parameter :
Identification of the final receiver: (cf annexe B : mode store and forward, for more
information)

163

62

ETEBA-CS--

mandatory parameter

Bank identification :

Bytes 1 to 3 : identifier type (e)
value = ZZZ : mutually agreed
value = 005 : CFONB standard
value = ZBF , BdF code (bank + branch)

Bytes 4 to 24 : identifier (C)

if standard identifier
corporate identifier
service and individual identifier

JULY 1989 PeSIT VERSION 1

FILE ACCESS CONTROL

Type: C Length 16 optional parameter

SIT

Prohibited

NON-SIT

Not used

ETEBAC5

Bytes 1 to 8 : current customer password
Bytes 9 to 16 : new password

CHAPTER 4 164

63

JULY 1989 PeSIT VERSON 1

SERVER DATE AND TIME

Type: D Length 12

SIT

Prohibited

NON-SIT

Not used

ETEBAC5

Bytes 1 to 6 : date (YYMMDD)
Bytes 7 10 12 : time (HHMMSS)

CHAPTER 4 ,.5

64

JULY 1989 PeSIT VERSION 1 CHAPTER 4

AUTHENTICATION TYPE

Type: A Length 3 optional parameter with default value

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

By tel: presence of authentication (S)

2..tilo
1 '" yes

Byte 2 : used algorithm (S)
0", RSA
1 = DES

Byte 3 : procedure (S)
o = certificate exchange
1 = three-way authentication
2 '" three-way authentication using only DES

ETEBAC5

By tel: presence of authentication (S)

2..tilo
1 '" yes

Byte 2 : used algorithm (8)
0", R8A

Byte 3 : procedure (8)
o '" certificate exchange
1 '" three-way authentication

166

71

JULY 1989 PeSIT VERSON 1 CHA?TER 4

AUTHENTICATION ELEMENTS

Type N Length n conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Parameter present if PI 71, byte 1 = 1 and PI 71, byte 3 not equal to O.

if PI 71, byte 3 '" 1: cf : ETEBAC 5 profile

if P171, byte 3",2

in CREATE/SELECT: KEKNAMEI name of the KEKI encryp1ion key: 8 bytes
KAUTH 1 authentication key encrypted under KEKI : 8 bytes
RNI DES encrypted under KAUTH 1 : 8 bytes

in ACK(CREATE/SELECT) : KEKNAME2 name of the KEK2 encryption key: 8 bytes
KAUTH2 authentication key encrypted under KEK2 : 8 bytes
RNI ~ DES encrypted under KAUTH2 : 8 bytes
RN2 DES encrypted under KAUTH2 : 8 bytes

in ORF : RN2- DES encrypted under KAUTH2 : 8 bytes

* : cf annexe C : use of security mechanisms

ETEBAC5

Parameter present if PI 71, byte 1 = 1 and PI 71, byte 3 = 1.

in CREATE/SELECT: RNI : 8 bytes

in ACK(CREATE/SELECT) : ANt RSA encrypted under sender's secret key: 64 bytes
RN2 : 8 bytes

in ORF : RN2 RSA encrypted under sender's secret key: 64 bytes

167

72

JULY 1989 PeSIT VERSON 1 CHAPTER 4

MAC COMPUTATION TYPE

Type A Length :4 optional parameter with default value

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Byte 1: presence of MAC computation (S)

lL=..n2
1 = yes

Byte 2 : used algorithm (S)
1 = DES

Byte 3 : procedure (S)
1 = transmission of partial MACs, article based computation
2 = transmission of final MAC only, article based computation
3 = transmission of partial MACs, computed on complete file
4 = transmission of final MAC only, computed on complete file

Byte 4 : transfer of MAC computation elements (S)
o '" no transfer
1 '" plaintext transfer
2 = RSA encrypted transfer
3 = DES encrypted transfer

ETEBAC5

Byte 1: presence of MAC computation (S)

lL=..n2
1 = yes

Byte 2 : used algorithm (S)
1:= DES

Byte 3 : procedure (S)
1 = transmission of partial MACs, article based computation
2 = transmission of final MAC only, article based computation
3 = transmission of partial MACs, computed on complete file
4 = transmission of final MAC only, computed on complete file

Byte 4 : transfer of MAC computation elements (S)
o '" no transfer
1 '" plaintext transfer
2 = RSA encrypted transfer

168

73

JULY 1989 PeSIT VERSON 1 CHAPTER 4 169

MAC COMPUTATION ELEMENTS 74

Type N Length n conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

MAC computation elements.

Parameter present if PI 73, byte 1 = 1 and PI 73, byte 4 different to O.

if PI 73, byte 4 :z: 1 ;

if PI 73, byte 4 = 2 :

if PI 73, byte 4 = 3 ;

ETEBAC5

MAC computation elements.

MAC computation key K2 : 8 bytes
initialisation vector IV2

MAC computation key K2 + initialisation vector IV2, encrypted
under the addressee's RSA public key: 64 bytes

KEKNAME name of the encryption key of key KEK ; 8 bytes
MAC computation key K2 DES encrypted under KEK ; 8 bytes
initialisation vector IV2 DES encrypted under KEK

Parameter present if PI 73, byte 1 = 1 and PI 73, byte 4 different to O.

if PI 73, byte 4 = 1 :

if PI 73, byte 4 = 2 ;

MAC computation key K2 ; 8 bytes
initialisation vector IV2

MAC computation key K2 + initialisation vector IV2, encrypted
under the addressee's RSA public key : 64 bytes

JULY 1989 PoSIT VERSON1 CHAPTER 4

ENCRYPTION TYPE

Type A Length : 4

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Byte 1: presence of encryption (S)

l1...=..n2
1 = yes

Byte 2 : used algorithm (8)
0= RSA
1 = DES
2=GOC
>= 3 : other

Byte 3 : procedure (S)
1 = article based computation
2 = computation on complete file

Byte 4 : transfer of encryption elements (8)
o = no transfer
1 = RSA encrypted transfer
2 = DES encrypted transfer

ETEBAC5

Byte 1: presence of encryption (S)

l1...=..n2
1 = yes

Byte 2 : used algorithm (S)
1 = DES

Byte 3 : procedure (S)
1 = article based computation
2 = computation on complete file

Byte 4 : transfer of encryption elements (S)
o = no transfer
1 = RSA encrypted transfer

optional parameter with default value

170

75

JULY 1989 PeSIT VERSON 1 CHAPTER 4 171

ENCRYPTION ELEMENTS 76

Type N Length n conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Encryption elements.

Parameter present if PI 75, byte 1 = 1 and PI 75, byte 4 different of D.

if PI 75, byte 4 = 1 :

if PI 75, byte 4 = 2 :

ETEBAC5

Encryption elements.

encryption key (Kl) + initialisation vector (IV1) encrypted under
the addressee's RSA public key: 64 bytes

KEKNAME name of the encryption key of key KEK : 8 bytes
encryption key (Kl) DES encrypted under KEK : 8 bytes
initialisation vector (IV1) DES encrypted under Kl : 8 bytes
initialisation vector (IV!)- DES encrypted under Kl : 8 bytes

Parameter present if PI 75, byte 1 = 1 and PI 75, byte 4 different to D.

if PI 75, byte 4 = 1 : encryption key (Kl) + initialisation vector (IV1) encrypted under
the addressee's RSA public key: 64 bytes

JULY 1989 PeSIT VERSON 1 CHAPTER 4 172

DIGITAL SIGNATURE TYPE 77

Type A Length 4 optional parameter with default value

SIT--

Prohibited

NC)N~SIr--

Prohibited

Securi-NON~SIT---

Byte 1: presence of digital signature (8)

lL=..n2
1 = yes

Byte 2 : used algorithm (8)
0= RSA

Byte 3 : procedure (8)
1 = ETEBAC 5 digital signature
2 = MAC digital signature

Byte 4 : double signature (8)
1 = single signature
2 = double signature

ETEBA-CS--

Byte 1: presence of digital signature (8)

lL=..n2
1 = yes

Byte 2 : used algorithm (8)
0= RSA

Byte 3 : procedure (8)
1 = ETEBAC 5 digital Signature

Byte 4 : double signature (8)
1 = single signature
2 = double signature

JULY 1989 PeSIT VERSkJN 1 CHAPTER 4

Type N Length 4 conditional parameter

SIT

Prohibited

NON·SIT

Prohibited

Secure NON·SIT

MAC.

The MAC is the result of applying the DES encryption algorithm to the file data and to the
parameters which make up the file FlO: Pili, PI 12, PI 51, PI 61, PI 62.

Parameter present in the FPDU.SYN if the PI 73 byte 1 = 1 and PI 73 byte 3 = 1.
Parameter present in the FPDU.OTF.ENO if PI 73 byte 1 = 1.

ETEBAC5

MAC.

The MAC is the result of applying the DES encryption algorithm to the file data and to the
parameters which make up the file FlO: Pili, PI 12, PI 51, PI 61, PI 62.

Parameter present in the FPOU.SYN if the PI 73 byte 1::: 1 and PI 73 byte 3 = 1.

173

78

JULY 1989 PeSIT VERSION 1 CHAPTER 4 174

DIGITAL SIGNATURE 79

Type N Length 64 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Digital signature.

The signature is the result of an RSA encryption under the sender's secret key of the MAC related
to the file (file data and FlO) and of the MAC related to the FlO only: parameters
Pili, PI 12, PI 51, PI 61, PI 62.

Parameter present in the FPDU.DTF.END if PI 73 byte 1 = 1 and PI 77 byte 1 = 1.

ETEBAC5

Digital signature.

The signature is the result of an RSA encryption under the sender's secret key of the MAC related
to the file (file data and FlO) and of the MAC related to the FlO only: parameters
Pili, PI 12, PI 51, PI 61, PI 62.

Parameter present in the FPOU.DTF.ENO if PI 73 byte 1 = 1 and PI 77 byte 1 = 1.

JULY 1989 PaSIT VERSkJN 1 CHAPTER 4 175

CERTIFICATE 80

Type N Length 168 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Certificate.

The nature of the certificate used in the secure Non-SIT PeSIT profile is left up to the choice of
the user.

ETEBAC5

Certificate.

Byte 1 (C) : certificate type
o = authentication
1 = digital signature
2 = test

Bytes 2 to 25 (C) : owner identification IOi

Bytes 26 to 37 (C) : device type and serial number NSi

Bytes 38 to 103 (N) owner's public key (modulus + exponent) CPi

Byte 104 (C) : Certification Authority RSA key pair reference

Bytes 105 to 168 (N) : certificate digital signature

JULY 1989 PeSIT VERSION 1 CHAPTER 4 176

ACKNOWLEDGEMENT OF DIGITAL SIGNATURE 81

Type N Length 64 conditional parameter

SIT

Prohibited

NON·SIT

Prohibited

Secure NON-SIT

Acknowledgement of the digital signature.

The use and the nature of the acknowledgement of the digital signature in the secure Non-SIT
PeS IT profile is left up to the choice of the user.

ETEBA-C5--- -

Acknowledgement of the digital signature.

The acknowledgement of the digital signature is the result of an RSA encryption under the
sender's secret key of : the received MAGs + date and time + AGKlNAK.

The field acknowledement contains two bytes:

byte 1: check of security elements (G)
o = accepted
1 = rejected
2 = not carried out

byte 2 : acknowledgement value (G)
X = meaningless
o = file transmitted for processing (if protocol integrated security)

JULY 1989 PeS IT VERSON 1 CHAPTER 4 177

SECOND DIGITAL SIGNATURE 82

Type N Length 64 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON·SJT

Not used.

ETEBAC5

Second digital signature.

Parameter present in the FPDU.DTF.END if PI 73 byte 1 = 1, PI 77 byte 1 = 1, PI 77 byte 4 = 2.

Signature of same format as the PI 79 but obtained with a different secret key (cf annexe C : Use
of security mechanisms).

JULY 1989 PeSIT VEASON1 CHAPTER 4 178

SECOND CERTIFICATE 83

Type N Length 168 conditional parameter

SIT

Prohibited

NON-SIT

Prohibited

Secure NON-SIT

Not used

ETEBAC5

Second certificate.

Certificate of the same format as the PI 80 but relative to a different key pair (cf annexe C : Use
of security mechanisms).

JULY 1989 PeS1T VERSION 1 CHAPTER 4 179

DATAGRAM 91

Type N Length 4096 optional parameter

SIT

Not used

NON-SIT/Secure NON-SIT

Datagram

ETEBAC5

Not used

JULY 1989 PoSIT VERSkJN 1 CHAPTER 4 180

FREE TEXT 99

Type Length 254 optional parameter

SIT

Not used

NON-SIT

Free text

No check is made by the protocol on the coding. the structure or the semantics of the contents of
the free text.

ETEBAC5

Free texl

The ETEBAC 5 standard imposes that the contents of the free text should be of character type
(ASCII coding).

JULY 1989 PeSIT VERSON1 CHAPTER 4 181

4.7.4 Protocol element structure

The following pages give the stucture of each message of the protocol for
each profile.

The representation provides a list of the PI and PGI for each message and
whether the PI is optional or conditional.

Optional PI

Optional PI with a default value

Conditional PI

EXAMPLE:

profile: SIT

PGl code: 9

PI code: ~~:W:J,~I 11 I 12

KEY:

(W) : PI present during a write transfer only
(R) : PI present during a read transfer only

13 111:i~:11 17 25

JULY '989 1 PoSIT 1 VERSON , CHAPTER 4 1'82 1

1) MESSAGE TYPE 20 = FPDU.CONNECT

SIT

The FPDU.CONNECT sent by the station does not contain a PIS. It is accepted that the FPDU.CONNECT
sent by the CTs contain a PIS, in which case it is ignored by the station.

NON-SIT/Secure NON-SIT

ETEBAGS

2) MESSAGE TYPE 21 = FPDU.ACONNECT

SIT

The FPDU.ACONNECT sent by the stalion does not contain a PIS. It is accepted that the FPDU.ACONNECT
sent by the CTs conlain a PI 5, in which caSe it is ignored by the station.

NON-SIT/Secure NON-SIT/ETEBAC 5

JULY 1989 PeSIT VERSkJN 1 CHAPTER 4 ,.3

3) MESSAGE TYPE 22 : FPDU.RCDNNECT

SITINON-SIT/Secute NON-SIT

2 99

ETEBAC5

4) MESSAGE TYPE 23 : FPDU.RELEASE

SITINON-SITISecufe NON-SIT

2 99

ETEBAC5

JULY 1989 PeS IT VERSON 1 CHAPTER 4

5) MESSAGE TYPE 24 = FPDU.RELCONF

SITINON·SITISecure NON·SITfETEBAC 5

6) MESSAGE TYPE 25 = FPDU.ABORT

SITINON·SIT/Secure NON·SIT

ETEBAC5

2 29

Note:

The code PI and the length are not present in the FPDU·ABORT, because use of the S·ABORT
service in PeSITonly allows 9 bytes in the user data field (cf : §4.3.1).

184

I JULY '''9 I PeSIT I VERSON' I CHAPTER. 1,85 I

7) MESSAGE TYPE 11 = FPDU.CREATE

SIT

8~2a 11 I 12 113 IIIW:IIIII,? 1 25 1

50

The FPDU.CREATE sent by the station does nol conlain a Plt6. It is accepted that the FPDU.CREATE
sent by the CTB contain a Plt6, in which case it is ignored by the station.

NON-SIT

17 25

30

111:11:111 32 ::ii:)),

I:~w~~~d
Secure NON-SIT

9

50

5' Ji

I JULY 1989 I PeSIT I VERSON1 CHAPTER 4 I 1 86 I

7) MESSAGE TYPE 11 = FPDU.CREATE (following)

ETEBAC5

~~] 11 I 12 1,3 1111:1t:1111111:!:~:1111'7 I 25 I

1W.U.I.l.l

30

: I:: : I 42 I:~ ~

JULY 1989 PeSIT VERSION 1 CHAPTER 4 187

8) MESSAGE TYPE 30 = FPDU.ACK (CREATE)

SIT

NON-SIT

2

Secure NON-SIT

2

ETEBAC5

2

I JULY 1989 I PeSIT I VEASON1 CHAPTER 4 I 1 88 I

9) MESSAGE TYPE 12 = FPDU.SELECT

SIT

This FPDU is not used in the SIT profile

NON·SIT

Secure NON·SIT

ETEBAC5

JULY 1989 I PeSIT VERSON 1 CHAPTER 4 l' 89 I

10) MESSAGE TYPE 31 = FPDU.ACK (SELECT)

SIT

This FPDU is not used by the SIT profile.

NON-SIT

I 2 ~Z%1a 11 1 12 1,3 1111:1:,11111 25 I

Secure NON-SIT

30

111:11:11 32

50

JULY 1989 PeSIT

ETEBAC5

2 ~~2a 11 I 12

50

51

11) MESSAGE TYPE 13 = FPDU.DESELECT

SITINON·SIT/Secure NON·SIT

2 99

ETEBAC5

2

VERSON 1

12) MESSAGE TYPE 32 = FPDU.ACK(DESELECT)

SITINON·SIT/Secure NON·SIT

2 99

ETEBACS

2

CHAPTER 4 190

42

JULY 1989 PeSIT

13) MESSAGE TYPE 14; FPDU.ORF
SIT

VERSON 1 CHAPTER 4

The FPDU.ORF sent by the station does not contain any parameter. It is accepted that the FPDU.ORF
sent by the CTe contains a PI 21, in which case it is ignored by the station.

NON-SIT

Secure NON-SITiETEBAC 5

14) MESSAGE TYPE 33; FPDU.ACK(ORF)

SIT

The FPDU.ACK{ORF) sent by the station does not contain a parameter PI 21. It is accepted that the
FPDU.ACK(ORF) sent by the CTB contains a PI 21, in which case it is ignored by the station.

NON-SIT

2

191

JULY 1989 PeSIT

17) MESSAGE TYPE 01 = FPDU.READ

SIT/NON·SIT/Secure NON-SITIETEBAC 5

18) MESSAGE TYPE 35 =FPDU.ACK(READ)

SITINON-SIT/Secure NON-SIT

ETEBAC5

2 29

19) MESSAGE TYPE 02 = FPDU.WRITE

SITINON-SITISecure NON-SITIETEBAC 5

does not contain any parameters

VERSQN 1

20) MESSAGE TYPE 36 = FPDU.ACK(WRITE)

SITINON-SIT/Secure NON-SIT

2 18

ETEBAC 5

CHAPTER 4 193

JULY 1989 PeSIT VERSION 1

21) MESSAGE TYPE 08 = FPDU.TRANS.END

SIT

does not contain any parameters

NON-SIT

27 28

Secure NON-SITIETEBAC 5

22) MESSAGE TYPE 37 = FPDU.ACK(TRANS.END)

SIT

NON-SIT

2

Secure NON-SIT

2

ETEBAC5

2

CHAPTER 4 194

JULY 1989 PeSIT

23) MESSAGE TYPE 00 = FPDU.DTF

SITINON-SIT/Secure NON-SITIETEBACS

VERSON1

The FPDU.DTF contains the file dala but does not contain any parameters.

Note: The FPDU.DlF cannot be empty.

24) MESSAGE TYPE 41 = FPDU.DTFDA
MESSAGE TYPE 40 = FPDU.DTFMA
MESSAGE TYPE 42 = FPDU.DTFFA

SIT

ThesE! FPDU are not used in the SIT

NON-SIT/Secure NON-SITIETEBAC 5

CHAPTER 4

The FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA contain part of an article of the file but do not
contain any parameters.

Nole : the FPDU.DTFDA, FPDU.DTFMA, FPDU.DTFFA cannot be em ply.

25) MESSAGE TYPE 04 = FPDU.DTF.END

SIT/NON·SIT

Secure NON-SIT

2

ETEBACS

2

195

JULY 1989 PeS IT

26) MESSAGE TYPE 03 = FPDU.SYN

SIT/NON-SIT

Sacure NON-SIT/ETEBAC 5

20

27) MESSAGE TYPE 38 = FPDU.ACK(SYN)

SIT/NON-SIT/Secure NON-SITI
ETEBACS

@
28) MESSAGE TYPE 05 = FPDU.RESYN

SIT

This FPDU is not used in the SIT.

NON-SIT/Sacure NON-SIT

2 18

ETEBAC5

2 18 ~3"0 :/"/-0/::

VERSON 1

29) MESSAGE TYPE 39 = FPDU.ACK(RESYN)
SIT

This FPDU is not used in the SIT.

NON-SITlSecure NON-SITIETEBACS

CHAPTER 4 196

JULY 1989 PeSIT VERSON1 CHAPTER 4 197

30) MESSAGE TYPE 06 = FPDU.lDT

SITINON-SIT/Secure NON-SIT

2 19

ETEBAC5

2 19 ~ft;a

31) MESSAGE TYPE 3A = FPDU.ACK(IDT)

SIT, NON-SIT, Secure NON-SlT,ETEBAC5

does not contain any parameters.

JULY 1989 PeSIT VERSON 1

32) MESSAGE TYPE 16 = FPDU.MSG

SIT

This FPDU is not used in the SIT.

NON-SIT

B~ZJ 11 I 12 113 bdlll:J,t:1111

~~5X2wi1~
Secure NON-SIT

ETEBACS

This FPDU is not used.

CHAPTER 4 I 198 I

JULY 1989 PeSIT

33) MESSAGE TYPE 17 = FPDU.MSGDM

SIT

This FPDU is not used in the SIT.

NON-SIT

VERSON1

6~~ 11 I 12 13 6dlll:J,t:1111

~~~l~ 
Secure NON-SIT 

b~] 11 1'2 

ETEBAC5 

This FPDU is not used. 

34) MESSAGE TYPE 18 = FPDU.MSGMM 

SIT 

This FPDU is not used in the SIT. 

NON-SIT/Secure NON-SIT 

ETEBAC5 

This FPDU is not used. 

CHAPTER 4 199 



JULY 1989 PeS!T 

35) MESSAGE TYPE 19 = FPDU.MSGFM 
SIT 

This FPDU is not used in the SIT. 

Secure NON-SIT 

ETEBAC5 

This FPDU is not used. 

36) MESSAGE TYPE 38 = FPDU.ACK(MSG) 
SIT 

This FPDU is not used in the SIT. 

NON-SIT 

2 

Secure NON-SIT 

2 

ETEBAC5 

This FPDU is not used. 

VERSKJN 1 CHAPTER 4 200 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 201 

4.8 PeS IT PROTOCOL STATE MACHINE TABLES 

4.8.1 Formal description elements 

This chapter provides a formal description of the protocol in terms of a 
complete finite state machine with the states, events and associated actions. 

This description is equally applicable to PeSIT.F, PeSIT.F', PeSIT.F" and 
PeSIT.F"'. 

The state tables described in this chapter indicate, for each state possible 
during a PeSIT connection, the events which may occur in the protocol, the 
actions to be carried out and the resulting state. 

Before describing the state tables, the abreviations used will be defined. 

4.8.1.1 States 

ABREVIATJON NAME AND DESCRIPTION 

CN. .. PeSIT establishment regime 
CNOl IDLE, not connected 
CN02A Connection pending reception of an FPDU.ACONNECTor RCONNECT 
CN02B Connection pending reception of an F.CONNECT, R primitive 
CN03 CXlN'JEC1ID 
CN04B Release pending reception of an FPDU.RELCONF 
CN04B Release pending reception of an F.RELEASE, R primitive 

SF ... SELECT FILE REGIME 
SF01A File create pending reception of an FPDU.RELCONF 
SF01B File create pending reception of an F.CREATE, R primitive 
SF02A File seclect pending reception of an FPDU.ACK(SELECT) 
SFc28 File seclect pending reception of an F.SELECT, R primitive 
SF03 FILE SELECTED 
SF04A File release pending reception of an FPDU.ACK(DESELECT) 
SF04B File release pending reception of an F. DESELECT, R primitive 

cr ... FILE OPEN REGIWE 
OF01A Open file pending reception of an FPDU.ACK(ORF) 
OF018 Open file pending reception of an F.OPEN, R primitive 
OF02 DATA TRANSFER· IDLE 
OF03A File close pending reception of an FPDU.ACK(CRF) 
OF03B File close pending reception of an F.CLOSE, R primitive 



JULY 1989 PeS1T VERSION 1 CHAPTER 4 202 

ABREVIATION NAME AND DESCRIPTION 

TDL. .. BULK DATA TRANSFER - REGIME 
TDLD1A Read pending reception of an FPDU.ACK(READ) (CaUer) 
TDLD1 B Read pending reception of an F.READ,R primitive (Server) 
TDLD2A Data reception (Caller) 
TDL02B Data transmission (Server) 
TDLD3 Restarting pending reception of an FPDU.ACK(RESYN) 
TOL04 Restarting pending reception of an F.RESTART,R primitive 
TDLD5 Transfer interruption pending reception of an FPOU.ACK{lDT) 
TOLD6 Transfer interruption pending reception of an F.CANCEL, R 

primitive 
TOLD7 End read 
TDLD8A End read transfer pending reception of an FPDU.ACK(TRANS.END) 

(Caller) 
TDL08B En read transfer pending reception of an F.TRANSFER.END,R 

primitive (Server) 

TDE ... BULK DATA TRANSFER· REGIME 
TDE01A Write pending reception of an FPDU.ACK(WRITE) (Caller) 
TDE01B Write pending reception of an FWRITE, R primitive (Server) 
TDE02A Data transmission (Caller) 
TDE02B Data reception (Server) 
TDE03 Restarting pending reception of an FPDU.ACK(RESYN) 
TDE04 Restarting pending reception of an F.RESTART,R primitive 
TDE05 Transfer interruption pending reception of an FPDU.ACK(IDT) 
TED06 Transfer Interruption pending reception of an F.CANCEL, R 

primitive 
TOEO? End write 
TDE08A End write transfer pending reception of an FPDU.ACK(TRANS.END) 

(Caller) 
TOEOOB End write transfer pending reception of an F.TRANSFER.END, R 

primitive (Server) 

Note: 
The F .XXXX,R abbreviation indicates a response primitive. 

All states ending in the letter "A" concern the PeSIT caller and all 
those ending in the letter "8" concern the server. The other states 
are common to both units. 

4.8.1.2 Events 

In order to describe the complete finite state machine of a PeSIT 
unit, the incoming events are: 

- either the reception of a service primitive from the local user 
(request or response). 

- or the reception of an FPDU from the opposite PeS IT, 

or the detection of an error (expiration of a monitoring time
out or a protocol error). 



JULY 1989 PesrT VERSION 1 CHAPTER 4 203 

The main outgoing events are comprised of the emission of : 

- a service primitive towards the local user (indication or 
confirmation), 

- or a message intended for the opposite PeSIT unit. 

The following abreviations are used to define the events: 

xxx 
A (XXX) 

YYY(D) 

YYY(I) 

YYY(R) 

YYY(C) 

: FPDU.)()()( 

: FPDU.ACK replying 10 an FPDU.XXX 

: request primitive for the YYY service 

: indication primitive for the YYY service 

: response primitive for the YYY service 

: confirmation primitive for the YYY service. 

The allowed values for XXX and YYY are given in 4.2. 

4.8.1.3 Conditions 

The state transitions and the actions are sometimes conditional. 
The abreviations related to these conditions are defined as 
follows: 

ABREVIATION NAME AND DESCRIPTION 

+ Positive ACK {OK or warning} 
- Negative ACK (correctable or blocking) 
ab Premature transfer termination (1) 
ek Checkpointing option negotiated 
dr The caller is the receiver 
rei Recovery requested 
ell end of transfer code .. cancel or suspend 

CC>O There are unacknowledged checkpoints 

" " . " " (1) ab IS set by an F.CANCEL when the end of transfer code .. 
suspend or cancel. It is reset by an F.DESELECT. It is used to 
prevent F.READ (or WRITE) or F.OPEN from looping if a 
transfer is terminated prematurely. 

The following symbol - condition equivalence is used: 

- & AND. 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 204 

4.8.1.4 Actions 

The actions may be conditional or unconditional. Any particular 
action consists in : 

- sending an outgoing event. indicated by its abbreviated name, 

- or executing a specific action, 

- or imposing a condition. 

When several actions are specified, they must be executed in the 
order shown. 

a) Implicit actions 

b) 

A certain number of actions are not specified in the state 
tables, because they are implicit. These actions are: 

when there is an empty intersection in the table (the 
corresponding event is invalid). the connection is 
prematurely terminated (ABORT) with an appropriate 
diagnostic code, 

for each FPDU received, a systematic check is made 
(validation of the parameters used). If an error is detected, 
the recovery procedure is invoked, 

if a premature termination request is received, the 
following state is always "idle" regardless of the current 
state (except CN01), the ABORT is notified to the local user 
or the opposite PeSIT unit and all the parameters are re
initialised. 

Specific actions 

REG The following message was received from the 
"communication system" 

SI\B Set premature termination flag 

RESI\B Reset premature termination flag 

SCK Set checkpoint negotiated flag 

RESCK Resel checkpoint negotiated flag 

SDR Set caller = receiver flag 

RESDR Reset caller = receiver flag 

SREL Set recovery flag 

RESREL Reset recovery flag. 



JULY t989 P.SIT VERSION 1 CHAPTER 4 205 

4.8.2 Conventions 

To simplify the presentation, each state table is a part of the general table. 
The left column indicates the events and the uppermost line the different 
states. 

Each intersection in the table between an event and a state contains: 

general condition 

(cond :) NEXT STATE 

(cond :) ACTION 

in which: 

(optional) 

(mandatory) 

(optional) 

. the general condition is a condition which is valid for the entire 
intersection (expressed as "COND : cond"), 

- (cond :) is an optional condition which applies to the following line : the 
conditions are always written in lower case letters, 

- NEXT STATE : is the next state once all the indicated actions have been 
executed. The states are always written in upper case letters. 

ACTION entails sending an outgoing event, imposing a condition or 
executing a specific action. If several actions are specified, the must be 
executed in that order. The actions are always written in upper case 
letters. 

The following special characters are also used : 

"." 

" ." , 

end of condition code, 

separator between list items. 

An intersection in the table is considered to be invalid if no indication is 
given or if the general condition indicated by "CONO" is not met. 

All invalid intersections between states and "incoming service primitive" 
events (request or response) are considered to be local errors and as such 
are not standardised in this document. 

When the general state table was broken down into smaller sub-sections, all 
the lines and all the columns of the sub-tables which contained empty 
intersections were removed. Thus any intersection which does not occur in 
the state tables is implicitly invalid. 

Intersections marked "null" are valid evenVstate intersections were no 
action is executed and the finite state macine remains in the same state. 



JULY 1989 PeSIT VERSION 1 CHAPlER4 206 

4.8.3 Collision rules 

In the data transfer phase, collision cases may occur. The following rules 
should be applied in these cases: 

1. Priority order of the FPDUs 

1 - ABORT 
2 - IDT 
3 - RESYN 
4 - TRANS.END 
5- ACK.SYN 
6 - DTF.END 
7 - DTF 

2. If a collision occurs between two FPDUs of the same type, then the caller 
is given priority over the server. 

4.8.4 State tables 

There are two sets of state tables which are very depending on the roles 
assumed by the PeSIT units : caller or server. For the data transfer state 
machine, four separate tables have been defined: 

• caller-sender, caller-receiver, serveHeceiver, server-sender. 

TABLE PROTOCOL PHASE ROLE 

1 regime establishment caller 
2 regime establishment server 
3 file select caller 
4 file select server 
5 file open caller 
6 file open server 
7 data transfer caller-sender (wrile) 
8 data transfer server-receiver (write) 
9 data transfer caller-receiver (read) 
1 0 data transfer server-sender (read) 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 207 

TABLE 1 : regime establishment (caller) 

CN01 CN02A CN03 CN04A 

F.CONNECT(D CN02A 
OONNECT 

A.OONNECT CN03 
F.CONNECT(C) 
ck :SCK 

R.CONNECT CN01 
F.CONNECT(C) 

F.RELEASE(D) CN04A 
RELEASE 

RELOONF CN01 
F.RELEASE(C) 
ck:RESCK 

F.ABORT(D) CN01 CN01 CN01 
ABORT ABORT ABORT 

ABORT CN01 CN01 CN01 
F.ABORT(I) F.ABORT(I) F.ABORT(I) 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 208 

TABLE 2 : regime establishment (seNer) 

CN01 CN02B CN03 CN04B 

CONNECT(R) CN02B 
F.CONNECT(I 

F.CONNECT(R +: CN03 
• : CN01 
+ : A.CONNECT 
ck :SCK 
. : R.CONNECT 

RELEASE CN04B 
F.RELEASE(I 

F.RELEASE(R) CN01 
RELCa\F 
ck: RESCK 

ABORT CN01 CN01 CN01 
F.ABORT(I) F.ABORT(I) F.ABORT(I) 

F.ABORT(O) CN01 CN01 CN01 
ABORT ABORT ABORT 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 209 

TABLE 3 : File selection phase (caller) 

CNOS SF01A SF02A SF03 SF04A 

F.SELECT(D) SF02A 
SillCT 

A.(SELECT) + : SF03 
- : eN03 
F.SELECT(C) ; 
SOR 
rei: SREL 

F.CREATE(D) SF01A 
CREATE 

A.(CREATE) + : SF03 
- : CN03 
F.CREATE(C) 
rei: SREL 

F.DESELECT(D) SF04A 
DESBECT 

A(DESELECT) CN03 
F.DESELECT(C) 
ab: RESAB 
dr: RESDR 
rei: RESREL 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 210 

TABLE 4 : File selection phase (server) 

CN03 SF018 SF028 SF03 SF04B 

SELECT SF028 
F.SELECT(I) 

F.SELECT(R) + : SF03 
- : CN03 
A(SELECT) 
rei: SREL 

CREATE SF018 
F.CREATE(I) • 

F.CREATE(R) + : SF03 
- : CN03 
A(CREATE) 
reI: SAEL 

CESELECT SF048 
F.DESELECT(I) 

F.DESELECT(R) CN03 
A(DESELECT) 
ab: RESAB 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 211 

TABLE 5 : File opening phase (caller) 

SF03 OF01A OF02 OF03A 

F..OPEN (D) COND: NOTab 
OF01A 
at' 

A(ORF.) + : OF03 
- : SF03 
F..OPEN (C) 

F..CLOSE (D) OF03A 
at' 

A(CRF.) SF03 
F..CLOSE (C) 

TABLE 6 : File opening phase (server) 

SF03 OF018 OFo2 OF038 

at' COND: NOTab 
OF018 
F..OPEN (I) 

F..OPEN (R) + : OF02 
- : SF03 
A(ORF.) 

at' OF03B 
F..CLOSE (I) 

FCLOSE (R) SF03 
A (CRF.) 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 212 

TABLE 7 Data transfer phase Caller-Sender 

0'00 TDE01A TDE02A TDE03 TDE04 TDE05 TDEDS TDE07 TOEOSA 

FWAITE(O) CONO.NJTIlb 
TOEOIA 
WRITE 

A(WAITE) +:TDE02A 
<OF02 
FWAITE(C) 

F.CANCEL(D) TOBl5 TO'" TO'" TOED6 TO"" TO"" 

'" '" '" '" '0; '0; 

A(IDT) "'"' F.CANCEL(C) 

"" 

'" TO'" TO"" TO"" "'-li ".RL "EOO """ F.CANCEl{I) F.CANCEl{l) F.CANCEL(I) F.CANCEL(I) F.CANCEL{I) 

F.CANCa(fl) 0'"' 
AllOT) 

"" 
F.DATAEND(DJ ToE07 ,w. .w. 

DTF.END 
eft : SAB 

F.Tw.NSfEREND(D) ,w. TDEOSA 
"""'.<NO 

A(TRANS.END) ,w. "'-li OR» 
F.TFlANSFER 
B'OO(C) 

F.DATA(D) TDE02A = "'"-

"'" 
F.CHECK(D) COND:ck&cc = '""-

<256 
TDE02A 

"" 
AISYN) """~ 

,w. .... , TOE07 "'"-
TDE02A F.CHECK(C) 
F.CHeCK(C) 

F.AESTART(D) "''''' TDE03 '""-
TDE03 """ '''''' 

A(RESYN) TDE02A "'-li 
F.RESTART(C) 

""" "''''' ,w. "'-li "''"'''' "'""" TDE04 TO"" TO"" 
F.AESTAAT(I) F.RESTAAT(I) F.RESTAIW) 

F.AESTART(A) TDE02A "RL 
~RES\IN) 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 213 

TABLE 8 Data transfer phase Server-Receiver 

0'00 TDE018 TO""" TOE03 TOE04 TOE05 TOEDS TDE07 TO""" 

WArTE CCN:I.i'01" ab 
TDBlIB 
F.WRITEII) 

F.WRITE(R) + :TDE02B 
-: OF02 
A(WRITE) 
+:REC 

F.CANCEL(D) TDEOS TDEOS TDEOS ""<L TDEOS TIl"" 

'" '" '" '" '0' 

A(IDT) OF02 
F.CANC8..(C) 

"" 
'" TDE06 TDE06 TDE06 TDE06 TIl"" TIl .. 

F.CANCELjI) F.CANCEL(I) F.CANCEL(I) F.CANCEL(I) F.CANCEL(I) F.CANCELjI) 

F.CANCB.(R) 0"" 
A(IDT) 

"" 
DTF.END TDE07 ,ell = 

F.DATA.END(I) 
cit . SAB 

TAIINS.EN:l ,ell = TDE08B 
F.TAANSEA. 
END(I) 

F.TPANSFEA.END(A) ""<L 0,,", 
A(TAANS.END) 

F.CHECK(A) TDE02B ,ell "-'<L TDE07 
A(SYN) (ASYN) 

"" 
on' TDE02B ,ell = 

F.DATA(I) 

"" 
"" COND:ck&cc ,ell = 

<256 
F.CHECK(I) 

"" 
F.AESTART(D) 000"" ,ell ""<L CONl):ck COND:ck 

mEOO 'OEOO TIl"" 

"'''"' "'"" """" 
A(AESYN) TDE02B = 

F.RESTART(C) 

"" 
'''''' COOD.ck COOD ck 'ell 

TDE04 TDE04 
F.AESTART(I) F.AESTART(I) 

F.RESTAAT(A) '"'''' "-'<L 
A(AESYN) 

"" 



JULY 1989 PeSIT VERSION 1 CHAPTER 4 214 

TABLE 9 Data transfer phase Caller-Receiver 

OF02 TDL01A TDL02A TOL03 TDL04 TDLOS TOL06 TDlO7 TOLOSA 

F.READ(D) COND : I\OT ab 
TOLDIA 
"'-'D 

A(READ) + : TDL02A 
-: OF02 

F.READ(C) 
+:REC 

F.CANC8..(D) TOLOS ToLOS TOlOS TDL05 TOL05 TOUIS 

"" '" '" '" '" '" 
A(IOT) "'''' F.CANCEL(C) 

'" 

'" """ TDLOO TDlOS "-'-' TOLOS """ F.CANCEL(I) F.CANCEL(I) F.CANCEl(I) F.CANCEL(I) F.CANCE41) 

F.CANCB.(A) 0"" 
A(IOT) 

'" 
OTFEND TOLD7 'CU "'-L 

F,DATAENO(I) 
cft . SAB 

F.TRANSFEFI(O) 'CU "U ToLOSA 
TRANS-END 

A(TRANS.END) 'CU "-'-' "'"' F.TRANSFER 
,"~q 

0"' TDL02A 'CU "-'-' 
F.oAl"(I) 

F.CHECK(R) COND :ck&cc 'CU .u"- .u"-
<256 
A(SYN) 

'" CONO :CC>O ,CU "-'-' 
TOL02A 
F.CHECK(I) 

F.RESTAAT(D) CQI\IO: ck COND:d< .u"- COND :ck COND:ck 
TOL03 ToL03 TO'" ,,'" 
"""" ""'" """" """" 

A(AESYN) TOL02A "-ll 
F.AESTAAT(C) 

"""" COND:ck ,CU "-'-' 
TOL04 
F.RESTART(I) 

F.AESTAAT(R) TDL02A 
A(RESYN) 



JULY 1989 PeSIT VERSION 1 CHAPlER4 215 

TABLE 10 Data transfer phase Server-Sender 

OF02 TDL016 TOL02B TDL03 TDL04 TOLOS TDL06 TOLD7 TDL0e8 

'''''' CONO : N:IT ab 
TOlOIB 
F.AEAD(IJ 

F.READ(R) +: TDLI)28 
·OF02 
A(READ) 

F,CANC8...(D) TOL05 TOL05 TOLOS NJCL TDlOS TOL05 

'" '" '" '" '" 
A(IOT) 0'" 

F.CANCEL(C) 

'" 

'" TOLOS TOLOS TDlOS TDLOS TOlOS """ F.CANCEL(I) F.CANCEl(I) F.CANCEl(I) F.CANCEl(I) F.CANCEL(I) F.CANCEL(I) 

F.CANCEL(R) 0'" 
A(IOT) 

"" 
F.DATA.ENO(D) TDL07 ,ell NJCL 

""'" eft : SAB 

TRANS.END ,ell TDLOeB 
f.TRANS.ENO(1 

F.TPANSFER.ENO(R) NJCL "'" A(TRANS.END) 

F.DATA(OJ TOL02B ,ell NJCL 

'" "" 
A(SYN) COND :ck&e<: ,ell Mll NJCL 

<256 
F.CHECK(C) 

F.CHECK(D) TDL02B Mll NJCL 

"'" "" 
F.RESTAAT(D) CONa :ck 'ell NJCL 

TOL03 

"""" 
A(RESYN) TDL028 "'U 

F.RESTART(C) 

"" 
''''''' COND:ck cooo:"" ,ell COND:ck 

TDL04 TOL04 TDL04 
F.AESTAAT(I) F.AESTAAT(I) F.RESTART(I) 

F.RESTART(R) TDL02B NJCL 
A(RESYN) 

"" 



JULY 1989 PeSIT VERSION 1 ANNEXE 1 A 1 -1 

ANNEXES 



JULY 1989 PeSIT VERSION 1 ANNEXE 1 A 1 ·2 

ANNEXE 1 COMPRESSION 

1. Negotiation of compression type 
2. Definition of compression types 
3. Interval between checkpoints when compression is used 

1. NEGOTIATION OF COMPRESSION TYPE 

The PeSIT protocol allows data compression to be requested in the FPDU.ORF. To do so the PI 
21, which contains two bytes, is used: 

- The first byte has two possible values: 

· 0 no compression, 

· 1 compression suggested. 

- The second byte has the following meaning: 

· 1 horizontal compression, 

· 2 vertical compression, 

· 3 both horizontal and vertical compression. 

The FPDU.ACK(ORF) contains the same Pf21. The allowable values in this reply are: 

- Byte 1 = 0 compression is refused, 

- Byte 1 = 1 compression is accepted. In this case and provided that the second byte of the PI 
21 in the FPDU.oRF was 3, then the second byte of the reply has the following meaning: 

· 1 horizontal compression only, 

· 2 vertical compression only, 

· 3 horizontal and vertical compression accepted. 

2. DEFINITION OF COMPRESSION TYPES 

Horizontal compression 

The horizontal compression is applied to identical consecutive characters. If this 
compression type was accepted at file opening time then each article in the file is broken up 
into strings. Each string is preceeded by a string header byte whose significance is as 
follows: 

bit 7. bit 6, bilS, bil4, bit 3, bil2, bi1 t. bilO 

. bil 7 : 

· a the string is not compressed, 
· 1 the string is compressed. 



JULY 1989 PeSIT VERSION 1 ANNEXE 1 A 1-3 

bit 6 

· a horizontal compression, 
· 1 vertical compression (not used in this context). 

Note: 

Once horizontal compression has been negotiated the only permissible values of bits 7 and 6 are 
00 or 10 (01 and 11 are prohibited). 

-bitsOt05: 

Length of the string (1 to 63 bytes). excluding the header byte. 

If the string is compressed the single character folowing the header byte is the component 
character. 

Example: 

The string 01 02 02 02 02 02 02 03 becomes 01 01 86 02 01 03. 

Vertical compression 

This compression type is applied by comparing consecutive articles. 

The first article is never compressed, but should nevertheless be preceeded by the string 
header byte defined below. 

From the second article onwards, each article is compared with the previous article so as to 
identify identical character sequences. 

Note: 

In order to simplify the recovery mechanism the first article following each checkpoint is 
never compressed vertically. 

Each article in the file is broken up into strings preceeded by a string header byte whose 
significance is as follows: 

bit 7, bit 6, bitS, bit 4, bit 3, bit 2, bit1, bita 

bit 7 : 

· a the string is not compressed, 
· 1 the string is compressed. 

bit 6 

· a horizontal compression (not used in this context). 
· 1 vertical compression. 

Note: 

Once vertical compression has been negotiated the only permissible values of bits 7 and 6 are 
00 or 11 (01 and 10 are prohibiled). 



JULY 1969 PeSIT VERSION 1 

- bits 0 to 5 : 

Length of the string (1 to 63 bytes), excluding the header byte. 

Example: 

· 151 ar1icle 01 02 03 02 03 05 06 07 
· 2nd article 05 06 03 02 03 05 08 09 

These two articles become: 

· 151 ar1icle 08 01 02 03 02 03 05 06 07 
· 2nd article 02 05 06 C4 02 08 09 

ANNEXE 1 

The string 03 02 03 05 in the second article has been compressed. 

Note: 

A 1-4 

If two consecutive articles do not have the same length then the hexadecimal character Ox40 
is used to pad the shorter string before compression. 

Combined horizontal and vertical compression 

During the same transfer it is possible to use both horizontal and vertical compresion at the 
same time. In which case each article is broken up into sub-strings and each sub-string may 
be compressed either horizontally or vertically. The choice of which compression type is 
applied to a particular sub-string is left up to the protocol designer. 

If vertical compression has been chosen for a sub-string and the previous article to which 
the vertical compression algorithm refers was itself compressed horizontally, then the 
vertical compression algorithm will refer to the version of the article before it was 
compressed. 

Example: 

· 151 ar1icle 01 01 01 01 02 03 
· 2nd article 01 01 01 01 02 04 

These two articles become : 

· 15t arlicle 84 01 02 02 03 
· 2nd article C5 01 04 

3. INTERVAL BETWEEN CHECKPOINTS WHEN COMPRESSION IS USED 

The interval between checkpoints, when compression is being used, is calculated using the 
compressed data, such as they were actually transmiued. 

The string header bytes should be included in the character count for calculating the interval 
between checkpoints. 



,---_.-------

JULY 1989 PeSIT VERSION 1 ANNEXE2 

ANNEXE 2 STORE and FORWARD OPERATION 

1. Introduction 
2. Incidence on the protocol 
3, FPDU.MSG 

1. INTRODUCTION 

A2-1 

The term store and forward is used to describe a mechanism which allows files to be routed 
from one machine to another. In this mode a file transmitted by machine A and intended for 
machine C to which there is no direct connection, will transit by a third (or more) machine(s) 
B which having received the file from A will be able to retransmit it to C. 

INITIAL FINAL 
SENDER:A RECEIVER:C 

LO~~ 
PeSIT 

~ocal 
PeSIT 

TRANSIT 
NCDE:B 

STORE and FORWARD 

PeSIT is a local protocol - i.e. the parameters are only significant during a connection between 
two corresponding PeSIT units linked by a virtual circuit (PeSIT.F'), an ISO session connection 
(PeSIT.F), or a NETEX connection (PeSIT.F") - so to authorise a store and forward mode 
requires a definition of how the PeSIT addressing scheme may allow a file to be routed and to 
determine which of the parameters should be transfered with the file during the successive 
connections between the different intermediary nodes in a network. 

As a case study we shall only define here the case of a write file transfer and we shall consider 
the following points; 

* addressing : for any given transfer we must identify the partners who will execute this 
stage of the transfer (caller and server for a PeSIT connection) and the partners for whom 
the transfer is being executed (initial sender and final receiver). 

* transfer Identifiers : we must define non-ambiguous transfer identifiers within the 
store and forward domain. 

* transfer acknowledgement : we must provide the initial sender with an indication that 
the file has effectively reached the final receiver (end to end acknowledgement). 



JULY 1989 PeSIT VERSION 1 ANNEXE2 A2-2 

2. INCIDENCE ON THE PROTOCOL 

1. For 1he FPDU.CONNECT 

The Connection phase sets up a relation between two partners linked by a direct connection: 
Ihe parameters in the FPDU.CONNECT and tha FPDU.ACONNECT are strictly k>cal. 

PI 3 and PI 4 : identify the partners between whom the connection is set up : a string of 1 to 
24 bytes. 

2. For the FPDU.CREATE 

As of the selection phase it is possible to distinguish the local partners from the end-Io-end 
partners. The PI 61 and PI 62 (Customer identifier and Bank identifier from ETEBAC5) 
are used to identify the initial sender and the final receiver. These parameters will allow 
the intermediate monitors to reroute the file to the next machine in the chain. The PI 3 and 
PI 4 (optional) in the FPDU.CREATE are used to provide are more precise address. 

PI 3 and PI 4 : 24 bytas : 

- bytes 1 to 8 : application name 
- bytes 9 to 16 : user name 
- bytes 17 to 24 : unreserved 

PI 61 and PI 62 (optional) : define the end-to-end partners for whom this transfer is 
being carried out: initial sender and final receiver: 24 bytes. 

The PI 13 (transfer identifier) helps to provide an unambiguous identification of the 
transfer : the same PI value will be propagated in each successive transfer for the same 
file. This applies only to the PI 13 in the FPDU.CREATE, the optional PI 13 in the 
FPDU.ACK(CREATE) that the server returns is "for information only" and will be specific 
to each transfer. 

The file identification will be made up of the following parameters: 

PI 11 (file type). 
PI 12 (fila name). 
PI 13 (transfer identifier), 
PI 61 (initial sender identification), 
PI 62 (final receiver identification). 

3. FPDU.MSG 

The FPDU.MSG will be used to transport the end-to-end transfer acknowledgement. The 
contents of this FPDU.MSG will be : 

PGI9 : 

- PI 3 : caller's identification (optional) : identical to the PI 4 which was in the 
FPDU.CREATE used for the file transfer being acknowldeged by this FPDU.MSG*, 

- PI 4 server's identification (optional) : identical to the PI 3 which was in the 
FPDU.CREATE used for the file transfer being acknowledged by this FPDU.MSG*, 

- Pill : file type: Pill of the file transfer being acknowledged, 

- PI 12 : file name: PI 12 of the file transfer being acknowledged, 



JULY 1989 PeS1T VERSION 1 ANNEXE2 A2-3 

- PI 13 : transfer identifier: PI 13 used end-ta-end for the file transfer which is being 
acknowledged, 

- PI 14 : requested attributes: unused, 

- PI 16 : Data coding (optional) : may allow decoding of the contents of the PI 91, if 
present, 

PGI 50 : Historical attributes : 

- PI 51 : PI 51 of the file transfer being acknowledged, 

- PI 61 : Initial sender identification: identical to the PI 62 of the file transfer which is 
being acknowledged, 

- PI 62 : Final receiver identification : identical to the PI 61 of the file transfer which is 
being acknowledging, 

- PI 91 : lexl (oplional). 

* if this PI makes up part of the file identification. 



JULY 1989 PeSIT VERSION 1 ANNEXE3 A3-1 

ANNEXE 3 USE OF THE SECURITY MECHANISMS 

1. Introduction 
2. Implementation of the algorithms 
3. Use of certificates 

1. INTRODUCTION 

The use of security mechanisms within file transfers is part of two profiles in PeSIT : 

- the ETEBACS profile. 
- the secure Non-SIT profile. 

The ETEBAC5 profile resulted from the work of the ETEBAC5 study groups ("transport" and 
"security" groups) of the CFONB. The complete description of the use of the security in the 
ETEBAC5 standard may be found in the document "Computer Informalion Exchange between 
Banks and their Customers" published by the GSIT. It should be noted that use of the ETEBAC5 
profile presumes the use of appropriate certificates whose production and distribution to the 
ETEBACS partners is controlled by the CFONB. 

The secure Non-SIT profile came about by a wish to implement security functions outside the 
ETEBAC5 environment. This profile uses the same security parameters as were defined for 
ETEBAC5. However it has been designed to allow the different functions : reciprocal 
authentication, integrity, confidentiality to be implemented with only the DES (Data 
Encryption Standard) algorithm whereas the ETEBAC5 profile has mandatory use of the RSA 
(Rivest Shamir Adleman) algorithm as well. 

The readers attention is drawn to the fact that the use of cryptographic devices and algorithms 
on data to be transmitted across public networks must comply with the local legislation. 

2. IMPLEMENTATION OF THE ALGORITHMS 

2.1 DES Encryption 

The implementation of the DES encryption is described in the ISO DP 10126 document. An 
initial chain length of 8 bytes is used. Padding is used to obtain encryption fields of a 
length which is a multiple of 8 bytes. 

2.2 MAC computation 

The implementation of the DES MAC computation is described in the ISO DIS 8731 
document. The DES is used in CSC mode, with an initial nul chaining value, and padding 
using a binary. 

2.3 Order of execution 

The MAC computation is carried out on the plain text data. 

The encryplion is carried out on plain text data (the MAC is not part of the data). 

The encryption and the MAC computation may be executed article by article, or on the 
whole file. In the article-by-article mode paddding is added at the end of each article, in 
the whole-file mode padding is only added at the end of the file. The mode chosen is 
indicated in the "operating mode" bytes of the "MAC computation type" and "Encryption 
type" parameters. 
The encryption and the MAC computation are only applied to the file data which implies 



JULY 1989 PeSIT VERSlOO1 ANNEXE3 A3-2 

that in the case of an FPDU multi-article the length bytes of the articles are not included 
in either the encryption or the MAC computation. 

If the MAC computation is carried out article by article, the MAC of the article n is used as 
the initial value to calculate the MAC of the article n+ 1. If partial MACs are transmitted, 
they are sent at the same time as the checkpoints and so may apply to one or more articles. 
The final MAC - or total file MAC - is necessarily the MAC of the last article in the file. 

The compression is done after encryption and MAC computation. Since the data stream 
after encryption is nearly a random string of bytes, compression after encryption is 
probably useless. We may conclude that encryption and compression are effectively 
mutually exclusive. 

2.4 Security and recovery 

If a transfer is recovered, the same encryption and MAC computation elements must be 
used for the following tries. These elements need not be sent again when a recovery takes 
place. If they are retransmitted then they should be identical to those elements previously 
transmitted. In particular the initialisation vectors should be the initial one and, 
consequently, are not significant during a recovery. A recovery always takes place from a 
checkpoint, thus at an article boundary, so both the sender and the receiver should re
initialise the MAC computation or the encryption algorithm using the appropriate values 
corresponding with the checkpoint. 

2.5. RSA Algorithm 

The RSA keys and modulus, as well as all RSA encrypted fields, are transported as 
numerical values (N), the most significant byte first and the least significant last. 

In the certificates, the couple modulus and public key are presented in this order: 
modulus (64 bytes, with binary zero padding in the most significant bits if necessary) 
followed by the public key (2 bytes). 

There is no redundancy before RSA encryption. All the data to be encrypted by RSA are 
right justified and binary zero padded. 

Example 1 : format of the PI 76 "encryption elements" 

Before RSA encryption this field is 16 bytes long: 

Bytes 1 to 8 : Encryption key (MSB byte 1, LSB byte 8) 
Bytes 9 to 16 : initialisation vector (MSB byte 9, LSB byte 16) 

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 48 
most significant bytes are zero. The most significant byte that may be non-zero is the 
most significant byte of the encryption key. 

Example 2 .- format of the PI 79 "Digital signature" 

Before RSA encryption this field is 16 bytes long : 

Bytes 1 to 8 : FID MAC (MSB byte 1, LSB byte 8) 
Bytes 9 to 16 : FID MAC and data (MSB byte 9, LSB byte 16) 



JULY 1989 PeSIT VERSION 1 AN~XE3 A3-3 

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 48 
most significant bytes are zero. The most significant byte that may be non-zero is the 
most significant byte of the FlO MAC. 

Example 3 : format of the PI 81 "Acknowledgement of Digital signature N 

Before RSA encryption this field is 30 bytes long: 

Bytes 1 to 8 : FID MAC (MSB byte 1, LSB byte 8) 
Bytes 9 to 16 : FID MAC and data (MSB byte 9, LSB byte 16) 
Bytes 17 to 28 : date and time (YVMMDDhhmmss) 
Bytes 29 to 30 : ACK/NAK 

For RSA encryption this field is considered to be a numerical value of 64 bytes whose 34 
most significant bytes are zero. The most significant byte that may be non-zero is the 
most significant byte of the FlO MAC. 

2.6. Transformation· 

A transformation is sometimes applied to the data in operating modes where only DES is 
used, thus not in the ETE8AC5 standard. For example it can be applied to "random 
numbers for authentication" which contribute to the reciprocal authentication, or for the 
encryption initialisation vectors to allow immediate verification that the two 
correspondants are using the same key encrypting keys. 

This transformation if denoted *. The convention is : 

8* is equivalent to "8 XOR FFFFFFFFOOOOOOOO" where: 

B is a string of 8 bytes 
XOR is the exclusive or operation 
FFFFFFFFOOOOOOOO is the an 8 byte number whose 4 most significant bytes have all 
their bits = 1 and the four least significant bytes have all their bits"" O. 

3. USE OF CERTIFICATES 

The exchange of certificates allows a correspondant's public key, as certified by the Authority, 
to be sent to his partner. 

It is necessary to distinguish the key-pairs (public key, secret key) thus the certificates 
containing the certified public keys, used for different security functions. 

The different uses of the RSA key-pairs are: 

1. exchange of random numbers (RN) for reciprocal authentication : use of the sender's secret 
key. 

2. exchange of the RSA encrypted MAC computation elements: use of the receiver's public key. 

3. exchange of the RSA encrypted encryption elements: use of the receiver's public key. 

4. exchange of the digital signature: use of the sender's secret key. 

5. exchange of the second digital signature: use of the sender's secret key. 

6. exchange of the acknowledgement of the digital signature: use of the sender's secret key. 

To transmit data encrypted under the receiver's public key requires his certificate to have 



JULY 1989 PeSIT VERSION 1 ANNEXE3 A3-4 

been received previously. 

To transmit data encrypted under the sender's secret key requires the sender's certificate to 
have been sent previously. 

The security constraints may imply the use of different key-pairs, and therefore different 
certificates, for the certification functions and for the key transport and signature functions. 

Write file case (Caller-sender to server-receiver) 

Let's consider a caller and a server irrespective of their statute within the ETEBACS standard 
(Customer, Customer operator, Bank, Bank operator). 

The caller holds a key-pair Pd1, Sd1 which corresponds with the certificate A«Pd1 », used 
to encrypt the Random number n. 

The caller holds a key-pair Pd2, Sd2 which corresponds with the certificate A«Pd2», used 
for the first (or only) digital signature. 

The caller holds a key-pair Pd3, Sd3 which corresponds with the certificate A«Pd3», used 
for the second digital signature, if such exists. 

The server holds a key-pair Ps1, Ss1 which corresponds with the certificate A«Ps1», used 
to encrypt the Random number n. 

The server holds a key-pair Ps2, Ss2 which corresponds with the certificate A«Ps2», used 
by the caller to transport the different encryption and MAC computation elements, and by the 
server to transport the acknowledgement of the digital signature. 

The following diagram summarises these exchanges while only showing the parameters related 
to the RSA keys. The case taken is with reciprocal authentication, reciprocal non-repudiation 
and confidentiality. 



.. -.-----

JULY 1989 PeSIT VERSION 1 ANNEXE3 A3·5 

FILE WRITING 

CALLER SERVER 

FPDU.CREATE: PI 12 = RNI 
PI 80 = A«Pdl» 

FPDU.ORF : PIn = (RN2)Sdl 
PI 74 = (K2)Ps2 
PI76 = (KI)Ps2 
PI 80 = A«Pd2» 
PI 83 = A<<Pd3» • 

-----~.~ 

FPDU.ACK(CREATE): Pin = (ALEAI)Ssl 
RN2 

PI 80 = A«PsI» 
PI 83 = A<<Ps2» 

-----~.~ 

FILE TRANSFER 

FPDU.DTF.END : PI 79 = (MACs)Sd2 
PI 82 = (MACs)Sd3 • 

FPDU.ACK(TRANS.END) : PI 81 = (MACs, ACK/NAK)Ss2 



JULY 1989 PeSIT VERSION 1 ANNEXE3 A3-6 

Read file case (Caller-receiver to server·sender) 

Let's consider a caller and a server irrespective of their statute within the ETEBAC5 standard 
(Customer, Customer operator, Bank, Bank operator). 

The cailer holds a key-pair Pd1, Sd1 which corresponds with the certificate A«Pdl », used 
to encrypt the Random number n. 

The cailer holds a key-pair Pd2, Sd2 which corresponds with the certificate A«Pd2», used 
by the server to transport the different encryption and MAC computation elements, and by the 
cailer to transport the acknowledgement of the digital signature. 

The server holds a key-pair Ps1, Ss1 which corresponds with the certificate A«Psl», used 
to encrypt the Random number n. 

The server holds a key-pair Ps2, Ss2 which corresponds with the certificate A«Ps2», used 
for the single digital signature (there is only one digital signature for a read transfer). 

The foilowing diagram summarises these exchanges while only showing the parameters related 
to the RSA keys. The case taken is with reciprocal authentication, reciprocal non-repudiation 
and confidentiality. 



JULY 1989 PeSIT VERSION 1 ANNEXE3 A3-7 

FILE READING 

CALLER SERVER 

FPDU.SELECf : PI 72 = RNI 
PI 80 = A«Pdl» 

-----~.~ 

FPDU.ORF : PI 72 = (RN2)Sdl 
PI 80 = A«Pd2» 

FPDU.ACK(SELECT) : PI 72 = (RNI)Ssl 
RN2 

PI 80 = A«PsI» 
PI 83 = A«Ps2» 

FPDU.ACK(ORF) : PI 74 = (K2)Pd2 
(KI)Pd2 

FILE TRANSFER 

FPDU.DTF.END : PI 79 = (MACs)Ss2 

FPDU.TRANS.END : PI 81 = (MACs. ACK/NAK)Sd2 

... 



JULY 1989 PeS1T VERSION I ANNEXE4 A4-1 

ANNEXE 4 ERROR DIAGNOSTICS 

Diagnostic code 

Error type Cause Code Cause Service element 
concerned 

0 000 "Success" : no error All 

3 300 Local "communication system" saturation F.ca-JNECT 
3 301 Unknown called party identification 
3 302 Called party not connected to a SSAP 
3 303 Distant ~communication system" satured 

(too many connections) 
3 304 Unauthorized caller identification (security) 
3 305 Negociation failure : -SELECT 

306 - RESYN 
307 - SYNC 

3 308 Version number not supported 
3 309 Too many connections already open for a 

processing center 
3 321 Call the back-up number 
3 322 Call back later 
3 399 Other 

3 312 Service termination requested by the user F_RELEASE 
3 313 Connection broken after inactivity time-out Td 
3 314 Unused connection broken to accept a new 

connection 
3 316 Connection broken by administrative request 
3 399 Other 

3 304 Unauthorized caller identification (security) F.A80RT 
3 309 Too many connections already open for a 

processing center 
3 310 Network incident 
3 311 Distant PeSIT protocol error 
3 312 Service termination requested by the user 
3 313 Connection broken after inactivity time-out Td 
3 314 Unused connection broken to accept a new 

connection 
3 315 Negociation failure 
3 316 Connection broken by administrative request 
3 317 Time-out expired 
3 318 Mandatory PI missing or illegal PI contents 
3 319 Byte count or article count incorrect 
3 320 Excessive number of restarts during the 

transfer 
3 399 Other 



JULY 1989 PeSIT VERSION 1 ANNEXE4 A4-2 

Diagnostic code 

Error type Cause Code Cause Service element 
concerned 

2 200 Insufficient file characteristics F.CREATE 
2 201 System resources temporarily insufficient F.SElECT 
2 202 User resources temporarily insufficient 
2 203 Low priority tranfer 
2 204 File already exists 
2 205 File does not exists 
2 206 File reception would cause disk quota overflow 
2 207 File busy 
2 208 File too old (prior to D-2 in SIT terms) 
2 209 This message type not accepted by the 

installation refered to 
2 226 Transfer refused 
2 299 Other 
3 304 Unauthorized caller identification (security) 
3 321 Call the back-up number 
3 322 Call back later 
3 399 Other 

2 210 Presentation context negociation failure F.OPEN 
2 211 File cannot be opened 
2 299 Other 

2 212 Normal file closure impossible F.CLOSE 
2 299 Other 

2 213 Unresolvable 1/0 error F.READ 
2 214 Restart negociation failure 
2 299 Other 

2 213 Unresolvable 1/0 error F.WRITE 
2 299 Other 

2 213 Unresolvable 1/0 error F.DATAEND 
2 214 Restart negociation failure F.CANCEL 
2 215 Internal system error 
2 216 Voluntary abrupt termination 
2 217 Too many unacknowledged checkpoints 
2 218 Restart impossible 
2 219 File space overflow 
2 220 Article length exceeds expected length 
2 221 End of transmission time-out expired 
2 222 Excess data between checkpoints 
2 299 Other 



JULY 1989 PesrT VERSION 1 ANNEXE4 A4·3 

Diagnostic code 

Error type Cause Code Cause Service element 
concerned 

2 223 Abnormal end of transfer F.TRANSFER.END 
2 224 The size of the file transmitted exceeds the size F.DESEI£CT 

given in the F.CREATE 
2 225 Congestion in the station application software: 

the file has been correctly received but SCRS 
cannot pass it on to the station application 
software 

2 299 Other 

1 100 Transmission error F.RESTART 
2 299 Other 



JULY 1989 PeSIT VERSION 1 ANNEXEs 

ANNEXE 5 : SUMMARY OF THE PROTOCOL UNITS 
AND THEIR PARAMETERS 

FPDU LIST 

Code FPDU LIST 

00 FPDU.DTF 
01 FPDU.READ 
02 FPDU.wRITE 
03 FPDU.SYN 
04 FPDU.DTF.END 
05 FPDU.RESYN 
06 FPDU.IDT 
08 FPDU.TRANS.END 

1 1 FPDU.CREATE 
1 2 FPDU.SELECT 
1 3 FPDUDESELECT 
1 4 FPDU.ORF 
1 5 FPDU.CRF 
1 6 FPDU.MSG 
1 7 FPDU.MSGDM 
1 8 FPDU.MSGMM 
1 9 FPDU.MSGFM 

20 FPDU.CONNECT 
21 FPDUACONNECT 
22 FPDUHCONNECT 
23 FPDU.REUEASE 
24 FPDU.RELCONF 
25 FPDU.ABORT 

30 FPDU.ACK(CREATE) 
31 FPDU.ACK(SELECT) 
32 FPDU.ACK(DESELECT) 
33 FPDU.ACK(ORF) 
34 FPDU.ACK(CRF) 
35 FPDU.ACK(READ) 
36 FPDU.ACK(WRITE) 
37 FPDU.ACK(TRANS.END) 
38 FPDU.ACK(SYN) 
39 FPDU.ACK(RESYN) 
3A FPDU.ACK(IDT) 
3B FPDU.ACK(MSG) 

40 FPDUDTFMA 
41 FPDU.DTFDA 
42 FPDU.DTFFA 

AS -1 



JULY 1989 PeSIT VERSION 1 

PARAMETER LIST 

PI code Parameter description 

1 
2 
3 
4 
5 
6 
7 
9 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 

CRCusage 
Diagnostics 
Caller identification 
Server identification 
Access control 
Version number 
Option: checkpointing 
File identifier 

File type 
File name 
Transfer identifier 
Requested attributes 
Recovered transfer 
Data coding 
Transfer priority 
Recovery point 
End of transfer code 

20 Checkpoint number 
2 1 Compression 
2 2 Access type 
23 Restarting 
25 Maximum size of a data element 
26 Protocol monitoring time-out 
27 Number of dala bytes 
28 Number of articles 
29 Diagnostic complements 

30 (PGI) 
31 
32 
33 
34 
36 
37 
38 
39 

40 (PGI) 
41 
42 

50 (PGI) 
51 
52 
61 
62 
63 
64 

7 1 
72 
73 

Logical attributes 
Article format 
Article length 
File attributes 
Use of the signature 
SIT MAC 
File Label 
Key length 
Key offset 

Physical attributes 
Storage reservation unit 
Maximum reserved space 

Historical attributes 
Date and time of creation 
Date and time of last access 
Customer identifier 
Bank identifier 
File access control 
Server date and time 

Authentication type 
Authentication elements 
MAC computation type 

74 
75 
76 
77 
78 
79 

80 
81 
82 
83 

91 
99 

ANNEXES 

MAC computation elements 
Encryption type 
Encryption elements 
Digital signature type 
MAC 
Digital signature 

Certificate 

AS-2 

Acknowledgement of Digital signature 
Second digital signature 
Second certificate 

Datagram 
Free text 


