APl Gateway

Version 7.6.2
zzzzzzzzzz

Developer Guide

N N

axway>\r

Copyright © 2020 Axway. All rights reserved.
This documentation describes the following Axway software:
Axway API Gateway 7.6.2

No part of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of the copyright owner, Axway.

This document, provided for informational purposes only, may be subject to significant modification. The descriptions and
information in this document may not necessarily accurately represent or reflect the current or planned functions of this
product. Axway may change this publication, the product described herein, or both. These changes will be incorporated in
new versions of this document. Axway does not warrant that this document is error free.

Axway recognizes the rights of the holders of all trademarks used in its publications.

The documentation may provide hyperlinks to third-party web sites or access to third-party content. Links and access to
these sites are provided for your convenience only. Axway does not control, endorse or guarantee content found in such
sites. Axway is not responsible for any content, associated links, resources or services associated with a third-party site.

Axway shall not be liable for any loss or damage of any sort associated with your use of third-party content.

Contents

Preface .. 7
Who should read thisguide il 7
How to use this guide 7
Related documentation il 8
SUPPO SBIVICES . 8
TraiNING SEIVICES oo e e e e e e 8

Accessibility . 9
Screen reader SUPPOM il 9
Support for high contrast and accessible use of colors 9

Updates and revisions .. il 10
Changes in VEISION 7.6.2 e 10
Changesin version 7.6. 1 . 10
Changes in version 7.6.0 10
Changes iN VEISION 7.5, 3 e 10
Changes in Version 7.5.2 10
Changes in VErSION 7.5, L L 11
Changes in Version 7.4.2 . 11
Changesin version 7.4. 1 . 11
Changes in Version 7.4.0 .. e 11

1 Install the code samples 13
Installation prerequisites 13
Unzip thedownloaded zip file il 13
Location of code SamPlesS . . oL 13

2 Build the code samples . iiil.. 15
BuUild prerequUIsites il 15
Build the samples ... il 15
Description Of Samples 16

3 Add a custom filter to API Gateway il 17
Use JavaScript to call existing Javacode 17

Invoke the poliCyo . 18
Testthe poliCy . .. 18
Use JavaScript for custom requirements iiiiil.. 19
Invoke the POliCY .. ol 19
Testthe poliCy .. . 19

Axway API Gateway 7.6.2 Developer Guide 3

Java and JavaScript translationsl 20

Write a custom filter using the extension kit 20
Create the TypPeDOC L. 21
Createthe Filter Class 23
Create the Processor Class il 24
Create the declarative UL XML file 26
Create the Policy Studio classes 28
Build the Classes il 32
Load the TYpeDOCSl 34
Construct @ poliCY ... il 35

4 Define user interfaces using declarative XML 37
Load the declarative XML file . .. 38
Declarative XML file _ ..l 39

5 Unit test a filter using the Traffic Monitor API ___ 42
Write a JUnit test for the Health Check policy filters 42

6 Java interfaces for extending API Gateway 44

Createaloadable module _ 44
LoadableModule interface il 44
LoadableModule example — TimerLoadableModule 46

Create a message creation listener 48
MessageCreationListener interface 48

Create amessage listener .. 49
Messagelistener interface il 49
Messagelistener example — FilterInterceptor 50

7 Access configuration values dynamically at runtime 55

Example selector eXpressiOns .. .l 55
Database query results ... iil. 56
LDAP directory server search results 58

8 Key Property Store 59

9 Entity Store il 60

BNty By DS o e 61
References to other entities 62
Entity type definitions ... iiii.. 62

Usethe ES EXPlOrer .. oL 63
Load a type definition il 63
Locate entities using shorthand keys 63

Axway API Gateway 7.6.2 Developer Guide 4

10 Debug custom Java code with a Javadebugger 65

11 Get diagnostics output from a custom filter _____ 66
Add custom trace output to custom code ...l 66
Add custom log4j output to custom codel 67

12 Enable API Gateway with IMX . . 69

13 Automate tasks with Jython scripts 71
Java and Jython translations 73

14 API Gateway REST APIS . . . 76
API Gateway component REST APIs _ . . 76
Import the API Gateway REST APIinto API Manager oo 77
Add aJersey-based REST API .. 78

Add a servlet using Policy Studio 80
Test the REST Jabber service 80
Get the ID of a group or API Gateway instance 81
Print the topology using managedomain iiiii... 81
Use curl to call the Topology REST APT _ . 82
Use Jython to query the Topology APL . 84
Appendix A: Declarative Ul reference 85
Declarative XML OVeIVIeW . . il 85
Element qUIiCK referenCe 85
Elements A0 C il 89
ACtOr AT DU 89
AgeATtIbULe il 90
AuthNRepositoryAttribute ... il 91
DINAING il 93
BitMaskAttribUte | .. 94
DU ON L 95
BUttONALtibUYe .. 97
CategoryAttribute .. 98
CertDNameAttri DUt . 99
CertSeleC O | il 100
CertTreeAttribUte ..l 101
CheckboXGroUp AT DULe . . 103
CircuitChainTable .. il 105
Combo At bULe ... 106
COMbBOBINAING .. 107
ComboStackPanel 109
CoNditiON 111
CroN A UL L 112

Axway API Gateway 7.6.2 Developer Guide 5

ContentEncodingAttribute 112

Elements D 0 M . 114
DireCtoryChO0SEr 114
ESPKReferenceSummaryAttribute 115
FleldTable .. L 116
FileChooserText _ ... il 118
(o] (o] 0] o BT 119
HTTPStatusTableAttribute 121
INCIUA e il 122
=] o= 123
LifeTimeAttribute . il 124
NamMEAT I DU . . 125
MSg A AT DU . . 126
MultiValueTextAttrAttribute ... iiiiill. 127

Elements N tO S il 129
NumberAttribute il 129
9= 1= 130
PasswordAttribute .. 134
RadioGroUpP AL DULE . .. L 135
ReferenCeSeleCtOr . . L 137
SamIATr DU il 139
SamlSubjectConfirmationAttribute 140
SCROIlPANEl e 142
SECHION . 143
SigningKeyAttribute ...l 144
SizeAttibULe | il 145
SoftRefListAttribute 147
SoftRef TreeAttibULe - . . 148
S N A DU L 149

Elements TR0 Z il 151
1= o L 151
tabROlder il 152
TablePage 153
Xt il 156
TextATtibULe .. 157
Ul il 159
Validator . 160
XPath At DUt .. 160

Axway API Gateway 7.6.2 Developer Guide 6

Preface

This guide describes how to extend, leverage, and customize API Gateway to suit the needs of your
environment. For example, this includes topics such as adding a custom filter to API Gateway,
accessing configuration values dynamically at runtime, and creating custom scripts to run against
API Gateway.

Who should read this guide

The intended audience for this guide is policy developers and system integrators.

Before creating your own custom filter you should understand exactly what message filters are, and
how they are chained together to create a message policy. These concepts are documented in detail
in the API Gateway Policy Developer Guide.

How to use this guide

This guide should be used in conjunction with the other guides in the API Gateway documentation
set.

Before you begin customizing or extending API Gateway, review this guide thoroughly. The
following is a brief description of the contents of each section:

Install the code samples on page 13 — Describes how to install the code samples used in the API
Gateway Developer Guide.

Build the code samples on page 15 — Describes how to build the code samples.

Add a custom filter to API Gateway on page 17 — Describes several methods for adding custom filters
to API Gateway.

Define user interfaces using declarative XML on page 37 — Describes how to use declarative XML to
define Policy Studio user interface dialogs.

Unit test a filter using the Traffic Monitor APIon page 42 — Describes how to unit test a custom filter
using the Traffic Monitor APL

Java interfaces for extending API Gateway on page 44 — Describes several Java interfaces that you
can use to extend API Gateway.

Access configuration values dynamically at runtime on page 55 — Describes how you can use
selectors to access configuration values at runtime.

Key Property Store on page 59 — Introduces the API Gateway Key Property Store.

Entity Store on page 60 — Introduces the Entity Store and describes how to use the ES Explorer tool.

Axway API Gateway 7.6.2 Developer Guide 7

Preface

Debug custom Java code with a Java debuggeron page 65 — Describes how to connect to API
Gateway with a Java debugger.

Get diagnostics output from a custom filteron page 66 — Describes how to add diagnostics output
from a custom filter.

Enable API Gateway with JMX on page 69 — Describes how to manage API Gateway using Java
Management Extensions (JMX).

Automate tasks with Jython scriptson page 71 — Describes the Jython scripts that are provided with
API Gateway.

API Gateway REST APIson page 76 — Describes the REST APIs exposed by API Gateway.

Declarative UI reference on page 85 — Details the declarative XML UI elements that can be used to
define the user interface of filters and dialogs in Policy Studio.

Related documentation

The AMPLIFY API Management solution enables you to create, publish, promote, and manage
Application Programming Interfaces (APIs) in a secure and scalable environment. For more
information, see the AMPLIFY API Management Getting Started Guide.

The following reference documents are also available on the Axway Documentation portal at
https://docs.axway.com:

o Supported Platforms

Lists the different operating systems, databases, browsers, and thick client platforms supported
by each Axway product.

« Interoperability Matrix

Provides product version and interoperability information for Axway products.

Support services

The Axway Global Support team provides worldwide 24 x 7 support for customers with active
support agreements.

Email support@axway.com or visit Axway Support at https://support.axway.com.

See "Get help with API Gateway" in the API Gateway Administrator Guide for the information that
you should be prepared to provide when you contact Axway Support.

Training services

Axway offers training across the globe, including on-site instructor-led classes and self-paced online
learning. For details, go to: http://www.axway.com/support-services/training

Axway API Gateway 7.6.2 Developer Guide 8

https://docs.axway.com/
mailto:support@axway.com
https://support.axway.com/
http://www.axway.com/support-services/training

Accessibility

Axway strives to create accessible products and documentation for users.

This documentation provides the following accessibility features:
« Screen reader supporton page 9

o Support for high contrast and accessible use of colorson page 9

Screen reader support

« Alternative text is provided for images whenever necessary.

« The PDF documents are tagged to provide a logical reading order.

Support for high contrast and accessible use of
colors

« Thedocumentation can be used in high-contrast mode.
« Thereis sufficient contrast between the text and the background color.

« Thegraphics have the right level of contrast and take into account the way color-blind people
perceive colors.

Axway API Gateway 7.6.2 Developer Guide 9

Updates and revisions

This guide includes the following documentation and code sample changes.

Note If you are upgrading from version 7.3.1 or earlier, and have developed custom filters, you
must update your custom filter classes and recompile before upgrading. For more details,
see the changes to classes described in Changes in version 7.4.0 on page 11.

Changes in version 7.6.2

« Restructured the API Gateway Analytics information and added links to the new API Gateway
Analytics User Guide.

Changes in version 7.6.1

No changes.

Changes in version 7.6.0

« Removed references to API Gateway Analytics.

Changes in version 7.5.3

« Added information on the CheckboxGroupAttribute element to the Declarative Ul reference. For
details, see CheckboxGroupAttribute on page 103.

» Updated or removed information on the jabber and restJabber code samples as these
samples are no longer included in the code samples supplied with API Gateway.

Changes in version 7.5.2

« Replaced links to the API Gateway REST API documentation on Axway Support at
https://support.axway.com with links to the the Axway Documentation portal at
https://docs.axway.com where the API Gateway REST API documentation is now available in
Swagger format.

Axway API Gateway 7.6.2 Developer Guide 10

https://support.axway.com/
https://docs.axway.com/

Updates and revisions

Changes in version 7.5.1

« Thefollowing API documentation has been removed from the API Gateway installation.
o apidocs — Documentation for the REST APIs provided by API Gateway.
o javadoc - Javadoc for the API Gateway classes.

This documentation is now available online:

o API Gateway REST API available from Axway Support at https://support.axway.com

o API Gateway Javadoc available from Axway Support at https://support.axway.com

Changes in version 7.4.2

« All sections in this guide were updated to reflect changes to the tree structure in Policy Studio.

Changes in version 7.4.1

« API Gateway is now built on JDK 1.8. As a result, the samples should also be built with JDK 1.8.
For more details, see Build the code sampleson page 15.

« Code samplesin the guide were updated with the class changes that occurred in 7.4.0 (see
Changes in version 7.4.0 on page 11).

« Many classes changed to new packages and were moved to new JAR files and directories.
Several of the JAR files were relocated to new directories in API Gateway and Policy Studio. To
pick up the correct JARs and classes, ensure that you build against the latest CLASSPATH paths
as defined in the build. xml filesin the SDK samples. The JAR file naming convention is:
informative-name.version. (in some cases)version-qualifier.

« The location of the Policy Studio help files for custom filters has changed. For more details, see
Create the Policy Studio classes on page 28. Ensure that your local build.xml file for the
code samples is updated with the latest SDK changes and that the CLASSPATH is correct.

Changes in version 7.4.0

» Thedeveloper samplesin the INSTALL DIR/apigateway/samples/developer
guide directory were updated with the following changes:

o The PropDef class changed location from com.vordel.circuit.PropDef to

com.vordel.common.util.PropDef.

o TheCircuit class changed location from com.vordel.circuit.Circuitto

com.vordel.config.Circuit.

Axway API Gateway 7.6.2 Developer Guide 11

https://support.axway.com/htmldoc/1433379
https://support.axway.com/
https://support.axway.com/htmldoc/1444954
https://support.axway.com/

Updates and revisions

o The SolutionPack classis replaced with ConfigContext in method signatures.
For example, any uses of com.vordel .precipitate.SolutionPack are

changed to com.vordel.config.ConfigContext.

o The LoadableModule class changed location from

com.vordel .dwe.LoadableModule to com.vordel.config.LoadableModule.

o The test ClientResponse class changed from
com.sun.jersey.api.client.ClientResponse to

javax.ws.rs.core.Response.

o The packages imported and used in the RestJabberRequestClient Test class
have changed.

You must recompile the classes.

Axway API Gateway 7.6.2 Developer Guide 12

Install the code samples

Code samples demonstrating some of the tasks discussed in this guide are included in your
installation of API Gateway in the INSTALL DIR/apigateway/samples/developer
guide directory (for example, C: \Axway-7.6.2\apigateway\samples\developer
guide).

Alternatively, the associated code samples are available from Axway Support at
https://support.axway.com as a zip file. This section describes how to install the samples.

Installation prerequisites

Before you install the code samples:

« Install API Gateway. You must install the API Gateway core server and Policy Studio, as the
samples require certain classes that ship with these components to be on the CLASSPATH.

« To write custom message filters for API Gateway, you must install the samples on the same
machine as API Gateway.

For more information on installing API Gateway, see the API Gateway Installation Guide.

Unzip the downloaded zip file

If you downloaded the samples from Axway Support at https://support.axway.com as a zip file, the
zip file contains the following directory structure:

developer—-guide-7.6.2\samples\developer guide

Use your preferred zip utility to unzip the file to a suitable location (for example, C: \samples).

Location of code samples

The location DEVELOPER _SAMPLES is used throughout this guide to refer to the location of the
code samples:

« Ifyou haveinstalled API Gateway, DEVELOPER SAMPLES refersto the INSTALL
DIR/apigateway/samples/developer guide directory.

Axway API Gateway 7.6.2 Developer Guide 13

https://support.axway.com/
https://support.axway.com/

1 Installthe code samples

« If you have installed the code samples from a zip file, as described in the preceding sections,
DEVELOPER SAMPLES refers to the location where you installed the samples (for example,
theC:\samples\developer-guide-7.6.2\samples\developer guide
directory).

Axway API Gateway 7.6.2 Developer Guide 14

Build the code samples

API Gateway provides several code samples that demonstrate the tasks described in this guide, such
as adding a custom filter or adding a message listener to API Gateway. This topic describes how to
build the code samples.

Build prerequisites

API Gateway is built with JDK 1.8. To avoid BadClassVersion errors that might arise when
deploying your sample classes with the API Gateway, you must also build the code samples with JDK
1.8.

Build the samples

Complete the following steps to build the samples:
1. Setthe VORDEL HOME and POLICYSTUDIO_ HOME environment variables:
» Setthe VORDEL HOME environment variable to point to the root of your Axway API

Gateway installation. For example, if you installed API Gateway in
C:\Axway7.6.2\apigateway, set VORDEL HOME to this directory.

« Setthe POLICYSTUDIO HOME environment variable to point to the root of your
Policy Studio installation. For example, if you installed Policy Studio in
C:\Axway7.6.2\policystudio, set POLICYSTUDIO HOME to this directory.

2. Setthe JAVA HOME and JUNIT HOME environment variables:

« Setthe JAVA HOME environment variable to point to the root of a JDK 1.8 installation
(forexample, C:\jdk1.8.0 07).

» Setthe JUNIT HOME environment variable to point to the directory containing your
JUnit JAR file. The required version is 4.8.2 (for example, junit 4.8.2.7jar).

3. Add Apache Ant to your PATH environment variable. For example, if Apache Ant is installed in
C:\ant, add C: \ant\bin to your PATH. See the Apache Ant website for more information

on Apache Ant.
4. To build and run each sample, follow these steps:

a. Change to the directory where the sample is installed. Each sample is installed under
DEVELOPER SAMPLES/SAMPLE NAME (for example, DEVELOPER
SAMPLES/FilterInterceptorLoadableModule).

b. Openthe README . TXT file and follow the instructions to build and run the sample.

Axway API Gateway 7.6.2 Developer Guide 15

http://ant.apache.org/

2 Build the code samples

Description of samples

The following code samples are included:

+ DEVELOPER SAMPLES/FilterInterceptorLoadableModule —Sample classes
that implement Java interfaces. For more information, see Java interfaces for extending API
Gateway on page 44.

Axway API Gateway 7.6.2 Developer Guide 16

Add a custom filter to API
Gateway

You can extend the capability of API Gateway by adding a custom filter. There are several options
for adding a custom filter:

« Write your custom requirement in Java and invoke it using the Scripting Language filter. You
can use this approach to develop your business logic in a standard IDE and debug and test it in
standalone mode before integrating with API Gateway. See Use JavaScript to call existing Java
codeon page 17.

« Write your custom requirement using the Scripting Language filter alone. See Use JavaScript
for custom requirements on page 19.

« Write your custom filter using the API Gateway developer extension kit. Using this approach, a
fully integrated filter is created that has the API Gateway runtime capability and appears in the
filter palette in Policy Studio. See Write a custom filter using the extension kit on page 20.

The following examples all use different approaches to extend API Gateway by adding a custom
filter.

The following table summarizes the different approaches for adding a custom filter:

Scripting Writing a Java Filter

Quick way to reuse some functionality Enterprise integration
exposed in Java

No major development skills required Development skills required
Does not appear in filter palette in Policy Filter appears in filter palette in Policy Studio
Studio
Possible approaches: Possible approaches:
o Use JavaScript to call existing Java code « Write a custom filter using the extension
on page 17 kiton page 20

« Use JavaScript for custom requirements
on page 19

Use JavaScript to call existing Java code

In this approach, you write your custom requirement in Java and invoke it using JavaScript in a
Scripting Language filter.

Axway API Gateway 7.6.2 Developer Guide 17

3 Add a custom filter to API Gateway

Follow these guidelines:

1. Create a Java class that meets your custom requirement.

2. Build a JAR file from the Java class and add it, and any third-party dependencies, to the API
Gateway CLASSPATH and to the runtime dependencies in Policy Studio.

3. Create a policy (for example, called Invokelava) in Policy Studio that contains only a
Scripting Language filter. Configure the filter to invoke the Java code using JavaScript.

Note Werecommend that you select JavaScript in the Language field of the
Scripting Language filter, and ensure that the JavaScript syntax in the script
conforms with Nashorn engine syntax. For more information about migrating
from Rhino to Nashorn, see the Rhino Migration Guide.

1. Configure API Gateway to invoke the policy. For more information, see Invoke the policy on
page 18.

2. Test the policy using API Tester. For more information, see Test the policy on page 18.

Invoke the policy

To configure the API Gateway to invoke the new policy, follow these steps:

1. Under the Environment Configuration > Listeners node in Policy Studio, select the path
(for example, API Gateway > Default Services > Paths).

2. On theresolvers window on theright, click Add > Relative Path.
3. Enter the following values on the dialog and click OK:
« When a request arrives that matches the path: /invokejava

« Path Specific Policy: Click the browse button and select the InvokeJava policy. This
sends all requests received on the path configured above to your newly configured

policy.
4. To deploy the new configuration to API Gateway, click the Deploy button on the toolbar or
press F6 and follow the instructions.

Test the policy

To test the configuration, follow these steps:

1. Start API Tester.

2. Click the arrow next to the Play icon and select Request Settings.

3. IntheUrlfield, enterhttp://localhost:8080/invokejava to send the message to
the relative path you configured above.

4. Click Run to send the message to API Gateway.

Tip Alternatively, you can test the policy by entering the URL
http://localhost:8080/invokejava into any web browser.

Axway API Gateway 7.6.2 Developer Guide 18

https://wiki.openjdk.java.net/display/Nashorn/Rhino+Migration+Guide

3 Add a custom filter to API Gateway

Use JavaScript for custom requirements

In this approach, you write your custom requirement using the Scripting Language filter alone.
Follow these guidelines:

1. Create a policy (for example, called InvokeScript) in Policy Studio that contains only a
Scripting Language filter. Configure the filter to invoke JavaScript that meets your custom
requirement.

Note We recommend that you select JTavaScript in the Language field of the
Scripting Language filter, and ensure that the JavaScript syntax in the script
conforms with Nashorn engine syntax. For more information about migrating
from Rhino to Nashorn, see the Rhino Migration Guide.

1. Configure API Gateway to invoke the policy. For more information, see Use JavaScript for
custom requirementson page 19.

2. Test the policy using API Tester. For more information, see Use JavaScript for custom
requirementson page 19.

Invoke the policy

To configure the API Gateway to invoke the new policy, follow these steps:

1. Under the Environment Configuration > Listeners node in Policy Studio, select the path
(for example, API Gateway > Default Services > Paths).

2. On theresolvers window on theright, click Add > Relative Path.
3. Enter the following values on the dialog and click OK:
« When a request arrives that matches the path: /invokescript

« Path Specific Policy: Click the browse button and select the InvokeScript policy.
This sends all requests received on the path configured above to your newly configured

policy.
4. To deploy the new configuration to API Gateway, click the Deploy button on the toolbar or
press F6 and follow the instructions.

Test the policy

To test the configuration, follow these steps:
1. Start API Tester.
2. Click the arrow next to the Play icon and select Request Settings.

3. IntheUrl field, enterhttp://localhost:8080/invokescript to send the message
to the relative path you configured above.

4. Click Run to send the message to API Gateway.

Axway API Gateway 7.6.2 Developer Guide 19

https://wiki.openjdk.java.net/display/Nashorn/Rhino+Migration+Guide

3 Add a custom filter to API Gateway

Tip Alternatively, you can test the policy by entering the URL
http://localhost:8080/invokescript into any web browser.

Java and JavaScript translations

If you are using JavaScript in a Scripting Language filter to add a custom filter to API Gateway
(see Use JavaScript to call existing Java code on page 17 or Use JavaScript for custom requirements
on page 19), the following table provides some tips on translating from Java or starting with

JavaScript.

Note We recommend that you select JavaScript in the Language field of the
Scripting Language filter, and ensure that the JavaScript syntax in the script
conforms with Nashorn engine syntax. For more information about migrating
from Rhino to Nashorn, see the Rhino Migration Guide.

Java Equivalent in JavaScript

String x = new String(“Hello World”);

import java.io.*;

try {
}
catch (Exception exp) {

}
Runnable x = new Runnable () {

public void run() {

// do something

1)

byte[] x = new byte[1l0];

for (FilterInvocation

filterInvocation : invocation.path) {

var x = new java.lang.String(“Hello World”);

var ioImport = new Javalmporter
(Packages.java.io);

with (ioImport) {

try {

}

catch (exp) {
}

var v = new java.lang.Runnable() {
run: function() {

// do something

var x = java.lang.reflect.Array.newlnstance
(java.lang.Byte.TYPE, 10);
for (1 = 0; i < invocation.path.size();

i++) |

Write a custom filter using the extension kit

Note

The following sections refer to jabber sample code that is no longer included in the code

samples supplied with API Gateway. We recommend that you use this section only as a
general guide for writing a custom filter using the extension kit.

Axway API Gateway 7.6.2

Developer Guide 20

https://wiki.openjdk.java.net/display/Nashorn/Rhino+Migration+Guide

3 Add a custom filter to API Gateway

In this approach, you write your custom filter using the API Gateway developer extension kit. This
section details how to write a custom message filter, called the Jabber Filter (API Gateway runtime
component and Policy Studio configuration component). It also shows how to configure it as part
of a policy in Policy Studio and then demonstrates how the filter sends an instant message to an
account on Google Talk.

The steps required to build, integrate, configure, and test the supplied JabberFilter and
JabberProcessor sample classes are as follows:

Step Description
Create the TypeDoc on Every filter has an associated XML-based TypeDoc description file
page 21 that contains the entity type definition. It defines the

Create the Filter class on
page 23

Create the Processor class
on page 24
Create the declarative UI

XML file on page 26

Create the Policy Studio
classeson page 28

Build the classes on page
32

Load the TypeDocs on
page 34

Construct a policy on page
35

configuration field names for that filter and the corresponding
data types for that filter.

Every message filter returns its corresponding Processor and Policy
Studio classes.

The Processor class is the API Gateway runtime component that is
responsible for processing the message. Every message filter has
an associated Processor and Filter class.

The declarative XML file is used to define the user interface for
filters and dialogs.

All filters are configured using Policy Studio. Every filter has a
configuration wizard that enables you to set each of the fields
defined in the entity that corresponds to that filter. You can then
add the filter to a policy to process messages.

When the classes are written, you must build them and add them
to the API Gateway and client CLASSPATH. Example classes are
included in the DEVELOPER _SAMPLES/ jabber directory.

You must register the TypeDoc created for the filter with the entity
store.

Construct a policy that sends an instant message to an account on
Google Talk and echoes a message back to the client. Use the GUI
component of the newly added filter to specify its configuration
and test the functionality of the filter (and its configuration).

Create the TypeDoc

A TypeDoc is an XML file that contains entity type definitions. Entity type definitions describe the
format of data associated with a configurable item. For more details on entity types, see Entity types
on page 61.

Axway API Gateway 7.6.2 Developer Guide 21

3 Add a custom filter to API Gateway

All TypeDocs for custom filters must:
o ExtendtheFilter type
« Define a constant filter class (for example, JabberFilter)
« List the configuration fields for the entity

The following example shows how the TypeDoc lists the various fields that form the configuration
data for the JabberFilter.

<entityStoreData>
<entityType name="JabberFilter" extends="Filter">
<constant name="class" type="string"
value="com.vordel.jabber.filter.JabberFilter"/>
<field name="fromEmailAddress" type="string" cardinality="1"/>
<field name="password" type="string" cardinality="1"/>
<field name="resourceName" type="string" cardinality="1"/>
<field name="toEmailAddress" type="string" cardinality="1"/>
<field name="messageStr" type="string" cardinality="1"/>
</entityType>
</entityStoreData>

You can also provide internationalized log messages by specifying an <ent it y> block of type
InternationationalizationFilterinthe<entityStoreData> elements. For
example:

<entityStoreData>
<!-- Internationalization for logging / audit trail -->
<entity xmlns="http://www.vordel.com/2005/06/24/entityStore"
type="InternationalizationFilter">
<key type="Internationalization">
<id field="name" value="Internationalization Default"/>
</key>
<fval name="type">
<value>JabberFilter</value>
</fval>
<fval name="logFatal">
<value>Error in the Jabber Filter sending instant message.
Error: ${circuit.exception}</value>
</fval>
<fval name="logFailure">
<value>Failed in the Jabber Filter sending instant message</value>
</fval>
<fval name="logSuccess">
<value>Success in the Jabber Filter sending instant message</value>
</fval>
</entity>
</entityStoreData>

Axway API Gateway 7.6.2 Developer Guide 22

3 Add a custom filter to API Gateway

Create the Filter class

AFilter classis responsible for returning the corresponding API Gateway runtime class and
Policy Studio class.

The Filter classis responsible for the following tasks:
« Specifying the message attributes it requires, consumes, and generates.
« Returning the corresponding API Gateway runtime class (the Processor class).
« Returning the corresponding Policy Studio class.

The following code shows the members and methods of the JabberFilter class.

public class JabberFilter extends DefaultFilter ({

protected final void setDefaultPropertyDefs () {
regProps.add (new PropDef (MessageProperties.CONTENT BODY,
com.vordel.mime.Body.class)) ;

@Override
public void configure (ConfigContext ctx, com.vordel.es.Entity entity)
throws EntityStoreException {
super.configure (ctx, entity);

public Class getMessageProcessorClass () {
return JabberProcessor.class;

public Class getConfigPanelClass () throws ClassNotFoundException {
// Avoid any compile or runtime dependencies on SWT and other UI
// libraries by lazily loading the class when required.
return Class.forName ("com.vordel.jabber.filter.JabberFilterUI") ;

There are two important methods implemented in this class:

e setDefaultPropertyDefs
e getMessageProcessorClass

The setDefaultPropertyDefs method enables the filter to define the message attributes that
it requires, generates, and consumes from the attributes message whiteboard.

The whiteboard contains all the available message attributes. When a filter generates message
attributes, it puts them up on the whiteboard so that when another filter requires them, it can pull
them off the whiteboard. If a filter consumes a message attribute, it is wiped from the whiteboard so
that no other filter in the policy can use it.

Axway API Gateway 7.6.2 Developer Guide 23

3 Add a custom filter to API Gateway

The attributes are stored in sets of property definitions (Set<PropDef>). A property definition
defines a property to type mapping. There are reqProps, genProps, and consProps, which
are inherited from the Filter class.

In the case of the JabberFilter class, the content . body attribute, which is of type
com.vordel .mime.Body, is required because the SOAP parameters must be extracted from the
body of the HTTP request. The property definition is declared as follows:

protected final void setDefaultPropertyDefs () {
reqgProps.add(new PropDef (MessageProperties.CONTENT BODY,

com.vordel.mime.Body.class)) ;

The next method isthe getMessageProcessorClass method, which returns the API Gateway
runtime component (the Processor class) that is associated with this Filter class. Each Filter class has
a corresponding Processor class, which is responsible for processing the message.

Finally, the corresponding Policy Studio configuration class is returned by the
getConfigPanelClass method, which in this caseis the
com.vordel.jabber.filter.JabberFilterUT class. This classis described in detail in
Create the Policy Studio classes on page 28.

Create the Processor class

This is the API Gateway runtime component of the filter that is returned by the
getMessageProcessorClass of the Filter class. The Processor class is responsible for
performing the processing on messages. It uses the configuration data to process each message.

The following code shows how the Processor attaches to the Filter class and uses its data to process
the message. It gets the configuration data using selectors to set up a connection to an XMPP
server, creates a chat, and sends a message to a chat participant. The complete code for the class is
available in the DEVELOPER SAMPLES/jabber directory.

public class JabberProcessor extends MessageProcessor {

@Override
public void filterAttached (ConfigContext ctx, com.vordel.es.Entity entity)
throws EntityStoreException {
super.filterAttached (ctx, entity);
to = new Selector<String>(entity.getStringValue ("toEmailAddress"),
String.class);
byte[] passwordBytes = entity.getEncryptedvValue ("password") ;
if (passwordBytes != null) {
try {
passwordBytes = ctx.getCipher () .decrypt (passwordBytes) ;

Axway API Gateway 7.6.2 Developer Guide 24

3 Add a custom filter to API Gateway

} catch (GeneralSecurityException exp) {

Trace.error (exp) ;

}

String pass = new String(passwordBytes) ;
password = new Selector<String>(pass, String.class);
resourceName = new Selector<String>(entity.getStringValue ("resourceName"),

String.class);
from = new Selector<String>(entity.getStringValue ("fromEmailAddress"),

String.class);

messageStr = new Selector<String>(entity.getStringValue ("messageStr"),

String.class);

public boolean invoke (Circuit c, Message message)
throws CircuitAbortException {
XMPPConnection connection = null;
try {
ConnectionConfiguration config =
new ConnectionConfiguration("talk.google.com", 5222, "gmail.com");
connection = new XMPPConnection (config);
SASLAuthentication.supportSASLMechanism ("PLAIN", O0);
connection.connect () ;
connection.login (from.substitute (message), password.substitute (message),
resourceName.substitute (message)) ;
} catch (org.jivesoftware.smack.XMPPException ex) {
Trace.error ("Error establishing connection to XMPP Server");
}
Chat chat = connection.getChatManager () .createChat (to.substitute (message),
new MessagelListener () {
@Override
public void processMessage (Chat arg0,
org.jivesoftware.smack.packet.Message argl) {

Trace.debug (argl.getBody ()) ;

1)

try {
chat.sendMessage (messageStr.substitute (message)) ;
connection.disconnect () ;

} catch (org.jivesoftware.smack.XMPPException ex) {
Trace.error ("Error Delivering block");

}

return true;

There are two important methods that must be implemented by every Processor class:

« filterAttached

e invoke

Axway API Gateway 7.6.2 Developer Guide 25

3 Add a custom filter to API Gateway

The filterAttached method should contain any API Gateway server-side initialization or
configuration to be performed by the filter, such as connecting to third-party products or servers.

The invoke method is responsible for using the configuration data to perform the message
processing. This method is called by API Gateway as it executes the series of filters in any given
policy. In the case of the JabberFilter, the invoke method uses the configuration data to set
up a connection to an XMPP server, creates a chat, sends a message to a chat participant, and
disconnects from the XMPP server.

The invoke method can have the following possible results:

Result Description

True If the filter processed the message successfully (for example, successful
authentication, schema validation passed, and so on), the invoke
method should return a true result, meaning that the next filter on the
success path for the filter is invoked.

False If the filter processing fails (for example, the user was not
authenticated, message failed integrity check, and so on), the invoke
method should return false, meaning that the next filter on the failure
path for the filter is invoked.

CircuitAbortException If for some reason the filter cannot process the message at all (for
example, if it cannot connect to an Identity Management server to
authenticate a user), it should throw a CircuitAbortException.
IfaCircuitAbortException isthrown in apolicy, the
designated fault processor (if any) is invoked instead of any successive
filters on either the success or failure paths.

Create the declarative Ul XML file

The declarative UI XML file encapsulates the design of the user interface of filters and dialogs. It
includes the markup UI elements and bindings to create the Jabber filter dialog within Policy Studio.

For more information on using declarative XML, see Define user interfaces using declarative XML on
page 37. For a complete listing of the available elements and bindings, see Declarative UI reference
on page 85.

The following declarative XML shows the elements needed to create the Jabber filter dialog:

<ui>
<panel columns="2">
<NameAttribute />

<!-- Connection settings -->
<group label="CONNECTION SETTINGS LABEL"

Axway API Gateway 7.6.2 Developer Guide 26

3 Add a custom filter to API Gateway

columns="2" span="2" fill="false">

<TextAttribute field="fromEmailAddress"
label="FROM EMAIL ADDRESS LABEL"
displayName="FROM EMAIL ADDRESS DISP NAME"/>

<PasswordAttribute field="password"
label="FROM PASSWORD LABEL"
displayName="FROM PASSWORD DISP NAME"/>

<TextAttribute field="resourceName"
label="RESOURCE_NAME LABEL"
displayName="RESOURCE NAME DISP NAME"/>

</group>

<!-- Chat Settings -->
<group label="CHAT SETTINGS LABEL"

columns="2" span="2" fill="false">

<TextAttribute field="toEmailAddress"
label="TO EMAIL ADDRESS LABEL"
displayName="TO EMAIL ADDRESS DISP NAME"/>
<TextAttribute field="messageStr"
label="MESSAGE_LABEL"
displayName="MESSAGE DISP NAME"/>
</group>
</panel>
</ui>

All declarative XML files start with <ui> elements. The preceding markup contains several
<TextAttribute> elementsand a <PasswordAttribute> element. Each element has a
field attribute, which directly corresponds to the field definitions in the type definition, and a label
attribute that correspond to localization keys in the resources.properties file.

The following figure shows the Jabber filter dialog that this XML creates.

Jabber Flter Configuration a]

Canfigure parameter values For the Jabber Filker

Mame: | Jabber |

Conneckion Settings

From : | |

Password : | |

Resource Mame: | |

Chat Settings
To: | |

Message ! | |

Mext =] [Finish l [Zancel

Axway API Gateway 7.6.2 Developer Guide 27

3 Add a custom filter to API Gateway

Create the Policy Studio classes

The next step after defining the user interface is to write two GUI classes that enable the fields
defined in the JabberFilter type definition to be configured. When the GUI classes and
resources are built, the visual components can be used in Policy Studio to configure the filter and
add it to a policy.

The following table describes the GUI classes and resources for the JabberFilter:

Class or Resource Description

JabberFilterUI.java This class lists the pages that are involved in a filter configuration
window. Each filter has at least two pages: the main configuration
page, and a page where log messages related to the filter can be
customized. This class is returned by the getConfigPanelClass
method of the JabberFilter class.

JabberFilterPage.java This class loads the declarative XML file which defines the layout of
the visual fields on the filter's main configuration window. For
example, there are five fields on the configuration window for the
Jabber Filter corresponding to the five fields defined in the entity
type definition.

resources.properties This file contains all text displayed in the GUI configuration window
(for example, dialog titles, field names, and error messages). This
means that the text can be customized or internationalized easily
without needing to change the code.

jabber.gif This image file is the icon that identifies the filter in Policy Studio, and
is displayed in the filter palette.

The JabberFilterUI class, which is returned by the getConfigPanelClass method of
the JabberFilter class, is responsible for the following:

« Listing the configuration pages that make up the user interface for the filter
« Naming the category of filters to which this filter belongs

« Specifying the name of the images to use as the icons and images for this filter

JabberFilterUl class

The code for the JabberFilterUI classis as follows:

public class JabberFilterUI extends DefaultGUIFilter

{
public Vector<VordelPage> getPropertyPages () {

Axway API Gateway 7.6.2 Developer Guide 28

3 Add a custom filter to API Gateway

Vector<VordelPage> pages =
pages.add (createlLogPage ()) ;

return pages;

public String[] getCategories() {

static {

public String getSmallIconId() {
return IMAGE KEY;

public Image getSmallImage () {
return Images.get (IMAGE KEY);

new Vector<VordelPage> () ;

pages.add (new JabberFilterPage()) ;

return new String[]{_ ("FILTER GROUP JABBER") };

private static final String IMAGE KEY = "jabberFilter";

Images.getImageRegistry () .put (IMAGE KEY,

Images.createDescriptor (JabberFilterUI.class,

public ImageDescriptor getSmallIcon() {
return Images.getImageDescriptor (IMAGE KEY) ;

"jabber.gif"));

The following table describes the important methods:

Method

Description

public Vector getPropertyPages ()

getCategories ()

public Stringl]

public Image getSmallImage ()

public ImageDescriptor getSmallIcon ()

Initializes a Vector of the pages that make up the
total configuration windows for this filter.
Successive pages are accessible by clicking the
Next button on the Policy Studio configuration
window.

This method returns the names of the filter
categories that this filter belongs to. The filter is
displayed under these categories in the filter palette
in Policy Studio. The Jabber Filter is added to the
XMPP Filters category.

The default image for the filter, which is registered
in the static block in the preceding code, can be
overridden by returning a different image here.

The default icon for the filter can be overridden by
returning a different icon here.

Axway API Gateway 7.6.2

Developer Guide 29

3 Add a custom filter to API Gateway

A page only represents a single configuration window in Policy Studio. You can chain together
several pages to form a series of configuration windows that together make up the overall
configuration for a filter. By default, all filters consist of two pages: one for the filter configuration
fields, and one for per-filter logging. However, more pages can be added if required. You can add
additional pages to the configuration in the get PropertyPages method.

If you look at the get PropertyPages method of the JabberFilterUI class, you can see
that the JabberFilterPage class forms one of the configuration windows (or pages) for the
JabberFilter. The JabberFilterPage classis responsible for loading the declarative UL
XML file that defines the layout of all the input fields that make up the configuration window for the
JabberFilter.

JabberFilterPage class

The code for the JabberFilterPage classis as follows:

public class JabberFilterPage extends VordelPage
{
public JabberFilterPage () {
super ("jabberPage") ;
setTitle(_ ("JABBER PAGE"));
setDescription(_ ("JABBER PAGE DESCRIPTION"));
setPageComplete (false) ;

public String getHelpID() {
return "jabber.help";

public boolean performFinish() {

return true;

public void createControl (Composite parent) {
Composite panel =
render (parent,
getClass () .getResourceAsStream("send instant message.xml"));
setControl (panel) ;
setPageComplete (true) ;

Axway API Gateway 7.6.2 Developer Guide 30

3 Add a custom filter to API Gateway

There are four important interface methods that must be implemented in this class:

Method

Description

public JabberFilterPage ()

public String getHelpID()

public boolean performFinish ()

public void createControl

(Composite parent)

The constructor performs some basic initialization, such as
setting a unique ID for the page, and setting the title and
description for the page. The text representing the page
title and description are kept in the
resources.properties file so that they can be
localized or customized easily.

This method is called by the Policy Studio help system.
There is a Help button on every configuration page in
Policy Studio. When you click this button, the help system
is invoked. Every page has a help ID (for example,
jabber_help) associated with it, which is mapped to
an HTML help page. This mapping is defined in the
following file under the directory where you have installed
Policy Studio:

/plugins/com.vordel.rcp.policystudio.gateway.help

<version>/csh.xml

To define a mapping for the help page, follow these steps:

1. Openthe csh.xml file.
2. Add the following XML to the file:

<context id="jabber help">
<description>Jabber Filter</description>
<topic label="Jabber Filter"

href="Content/PolicyDevTopics/jabber.htm"/>

</context>

3. Create a help file called jabber .htm to contain the
help for the filter in HTML format.

All URLSs specified in the csh . xm1 file are relative
from the
/plugins/com.vordel.rcp.policystudi
o.gateway.help <version> directory of your
Policy Studio installation.

This method gives you the chance to process the user-
specified data before it is submitted to the entity store. For
example, any validation on the data should be added to
this method.

This method is responsible for loading the declarative UI
XML file that creates the configuration pages. Localization
keys from the resources.properties file are used
to give labels for the input fields in the XML file.

Axway API Gateway 7.6.2

Developer Guide 31

3 Add a custom filter to API Gateway

resources.properties file

Both the declarative UI XML file and the GUI classes use localized keys for all text that is displayed on
the configuration window. This makes it easy to localize or customize all text displayed in Policy
Studio. The localization keys and their corresponding strings are stored in the
resources.properties file, which takes the following format:

#

Palette category for Jabber filters
#

FILTER GROUP JABBER=XMPP Filters

#

Properties for the JabberFilter Configuration Wizard

#

JABBER PAGE=Jabber Filter Configuration

JABBER PAGE_DESCRIPTION=Configure parameter values for the Jabber Filter

#

Field labels and descriptions

#

CONNECTION SETTINGS LABEL=Connection Settings

FROM EMAIL ADDRESS LABEL=From :

FROM EMATL_ADDRESS DISP NAME=Person sending the instant message
FROM PASSWORD LABEL=Password :

FROM PASSWORD DISP NAME=Password of Person sending the message
RESOURCE NAME LABEL=Resource Name:
RESOURCE_NAME DISP NAME=Unique resource Name

CHAT_SETTINGS_ LABEL=Chat Settings

TO EMAIL ADDRESS LABEL=To :

TO_EMAIL ADDRESS DISP NAME=Person receiving the instant message
MESSAGE LABEL=Message :

MESSAGE DISP NAME=Message Content

The final resource is the jabber . gif file, which is displayed as the icon for the Jabber Filter in
Policy Studio.

Build the classes

Perform the following steps to build the JAR file for the Jabber sample:
1. Change to the sample directory (DEVELOPER SAMPLES/jabber).

2. Run the following command to compile the code and build the JAR:

ant -f build.xml

Tip See the README . TXT file for additional instructions.

Axway API Gateway 7.6.2 Developer Guide 32

3 Add a custom filter to API Gateway

3. Add the new JAR and any third-party JAR files used by the Jabber classes (for example, the
SMACK API JAR files) to the CLASSPATH for all API Gateways and Node Managers on a host by
copying them to the INSTALL DIR/apigateway/ext/1lib directory.

Alternatively, you can add the JARs to the CLASSPATH for a single API Gateway instance only,
by copying them to the INSTALL DIR/apigateway/groups/GROUP
ID/INSTANCE ID/ext/lib directory.

4, Add the new JAR and any third-party JAR files used by the Jabber classes (for example, the
SMACK API JAR files) to the runtime dependencies in Policy Studio. Select Window >
Preferences > Runtime Dependencies, and click Add to browse to the new JAR and any
third-party JARs, and add them to the list. Click Apply to save the changes.

The following figure shows the runtime dependencies.

type filter text Runtime Dependencies R
Environmentalization
FIPS Mod Add files to the classpath. A copy of the file will be made in the plugins directory.

- ode You must restart the application passing the following parameter '-clean’ for
Policy Colors these changes to take effect.
Prompt for Credential -
Proxy Settings Jar Files Add
Runtime Dependencit :
SSL Settings &llib/smackjar
Status Bar
Topology Screen
Trace Level
WS-I Settings
» XML
" e n Restore Defaultsl l Apply

5. Restart the API Gateway instances and Node Managetrs.

6. Restart Policy Studio using the following command:

policystudio -clean

The extension kit includes all of the associated resources and classes to create the Jabber Filter.

Custom filter dependencies

If your custom filter introduces a dependency on a new third-party library, you must first check if
the required library is already available under the following directory and sub-directories:

INSTALL DIR/apigateway/system/lib

Axway API Gateway 7.6.2 Developer Guide 33

3 Add a custom filter to API Gateway

Note Any JAR file that you add under the following directories will be pushed ahead of
apigateway/system JAR files on the CLASSPATH:

« INSTALL DIR/apigateway/ext/lib
o INSTALL DIR/apigateway/groups/GROUP ID/INSTANCE ID/ext/lib

For example, API Gateway ships with specific versions of several Apache Commons JARs.
Introducing conflicting versions of these JARs could adversely affect the ability of the API Gateway
and Node Manager to function correctly.

Load the TypeDocs

You can register the type definition for the Jabber Filter with the entity store using Policy Studio.
When the entity type is registered, any time API Gateway needs to create an instance of the Jabber
Filter, the instance contains the correct fields with the appropriate types.

Register using Policy Studio

To register the type definition using Policy Studio, perform the following steps:
1. Start Policy Studio, and connect to the API Gateway.

2. Select File > Import > Import Custom Filters.

3. Browseto the Typeset.xml file. A TypeSet file is used to group together one or more
TypeDocs. This enables multiple TypeDocs to be added to the entity store in batch mode. The
JabberTypeSet.xml fileincludes the following:

<typeSet>

<!-- JabberFilter Typedoc -->

<typedoc file="JabberFilterDesc.xml" />
</typeSet>

When you import the TypeSet, the workspace refreshes. The new filter is available in the filter
list.

4. To verify that the Jabber filter exists, select an existing policy in the Policy Studio tree, and you
should see the XMPP Filters category in the palette, which contains the new custom Jabber
filter.

5. Click the Deploy button in the toolbar to deploy the new custom filter.

Tip You can also save the current configuration and deploy at a later point. For more
information on managing deployments, see the API Gateway DevOps Deployment
Guide.

Note Another way to verify that your new filter has been installed is to use the ES Explorer. You
can use the ES Explorer tool for browsing the entity types and entity instances that have
been registered with the Entity Store. For more information, see Use the ES Exploreron
page 63.

Axway API Gateway 7.6.2 Developer Guide 34

3 Add a custom filter to API Gateway

Construct a policy

You can build policies using the policy editor in Policy Studio. To build a policy, you can drag
message filters from the filters palette on the right on to the policy canvas. You can then link these
filters using success paths or failure paths to create a network of filters.

Create the policy
To create a policy, perform the following steps:
1. Inthe Policy Studio tree, right-click the Policies node and select Add Policy.
2. EnterSend Instant Message asthe name of the new policy in the dialog.
3. Drag a Jabber filter from the XMPP group onto the policy canvas.
4. Enter the following in the Jabber filter dialog:
« Name: Name of the filter
« From: User email address
« Password: User password
« Resource Name: Resource name (for example, apigateway)
« To: Chat participant’s email address
« Message: Message to send
5. To check that the help is working correctly, click the Help button on the filter dialog.

In Create the Policy Studio classes on page 28, as part of the getHe 1p method, you added a
mapping to the contexts.xml file (in the
/plugins/com.vordel.rcp.policystudio.resources <version> directory
of your Policy Studio installation). After restarting Policy Studio, the Help button should
function correctly.

6. To add a Reflect Message filter, which echoes the client message back to the client, drag it
from the Utility group onto the policy canvas.

7. Configure the Reflect Message filter as follows:
« Name: Enter a name for the filter (or use the default)
- HTTP response code status: Use the default value (200)
8. Connect the Jabber node to the Reflect Message node with a success path.

9. Right-click the Jabber filter, and select Set as Start to set it as the start filter for the policy.

Invoke the policy

To configure the API Gateway to invoke the new policy, follow these steps:

1. Under the Environment Configuration > Listeners node in Policy Studio, select the path
(for example, API Gateway > Default Services > Paths).

Axway API Gateway 7.6.2 Developer Guide 35

3 Add a custom filter to API Gateway

2. On theresolvers window on theright, click Add > Relative Path.
3. Enter the following values on the dialog and click OK:

« When a request arrives that matches the path: /send

« Path Specific Policy: Click the browse button and select the Send Instant

Message policy. This sends all requests received on the path configured above to your
newly configured policy.

4. To deploy the new configuration to API Gateway, click the Deploy button on the toolbar or
press F6 and follow the instructions.

The following diagram shows the complete policy:

EHH#I @ labber |

r

Iﬁl .;] Reflect Message |

Test the policy
To test the configuration, follow these steps:

1. Start API Tester.

2. Click the arrow next to the Play icon and select Request Settings.

3. IntheUrlfield, enterhttp://localhost:8080/send to send the message to the
relative path you configured above.

4. Click Run to send the message to API Gateway.
Tip Alternatively, you can test the policy by entering the URL
http://localhost:8080/send into any web browser.

API Gateway echoes the message back to the client using the Reflect Message filter after an
instant message has been sent to an account on Google Talk. The following is an example of an

instant message that appears on an account on Google Talk. This indicates that the newly added
filter has worked successfully.

bblobtest: Hi sending message fram
within PolicyStudio /send

Axway API Gateway 7.6.2 Developer Guide 36

Define user interfaces using
declarative XML

You can define the Policy Studio user interfaces for a custom filter using declarative XML.
Declarative XML is a user interface markup language that is used to define UI elements and bindings,
allowing you to quickly create dialogs within Policy Studio with minimal coding.

The defined UI elements map to Eclipse SWT (Standard Widget Toolkit) widgets and Axway
ScreenAttributes (groups of SWT widgets backed by entity instances).

All declarative XML files start and end with a <ui> element. Each element has a field attribute that
corresponds to a field definition in the type definition, and a label attribute that corresponds to a
localization key in the resources.properties file.

Axway API Gateway 7.6.2 Developer Guide 37

4 Define user interfaces using declarative XML

The following is an example of a dialog in Policy Studio:

Authorization Request lL“J

Filter will consume OAuth Authorization Requests

Name: Authorization Code Flow

Validation/Templates | Authz Code Details | Access Token Details | Monitoring

Authorize Resource Owner
() Use internal flow

@) Call this policy B and store subject in selector: ${authentication.subject.id}

< Back l Next >] [Finish] l Cancel

The following sections describe how the declarative UI XML file for this dialog is loaded within a
Policy Studio class, and detail the declarative XML file that defines the dialog.

Note Thisdialog and the following code are for demonstration purposes only and might not
reflect the current settings for this filter in Policy Studio.

Load the declarative XML file

The following code demonstrates how to load the declarative XML file within the Policy Studio class.

package com.vordel.client.manager.filter.oauth2.provider.authorize;

import org.eclipse.swt.widgets.Composite;

import com.vordel.client.manager.wizard.VordelPage;

Axway API Gateway 7.6.2 Developer Guide 38

4 Define user interfaces using declarative XML

public class OAuthAuthorizationRequestPage extends VordelPage {
public OAuthAuthorizationRequestPage () {
super ("ExampleFilterPage");
setTitle (“Put the title here”);
setDescription (“Put the description here"));

setPageComplete (true) ;

@Override
public void createControl (Composite parent) {

Composite container =

setControl (container) ;

render (parent, getClass().getResourceAsStream("declarative.xml"));

Declarative XML file

Thefollowing declarative.xml file defines the dialog in Policy Studio.

<ui>
<panel columns="2" span="2">
<NameAttribute />
<tabFolder span="2">
<tab label="OAUTH APPLICATION VALIDATION">
<panel>
<panel columns="2" fill="false">
<TextAttribute field="kpsAlias"
label="OAUTH USE_KPS"
required="true" />

</panel>

<RadioGroupAttribute field="authNWith" columns="4">
<choice value="INTERNAL AUTHN FLOW"
label="USE INTERNAL FLOW" span="4" />
<choice value="CIRCUIT FLOW"

<panel margin="1" columns="4" span="2" fill="false">
<ReferenceSelector field="circuitPK"

selectableTypes="FilterCircuit"
searches="ROOT CIRCUIT CONTAINER,CircuitContainer"

<group label="OAUTH AUTHORIZATION REQUEST AUTHN" fill="false">

label="OAUTH AUTHORIZATION REQUEST AUTHN USE CIRCUIT" />

Axway API Gateway 7.6.2

Developer Guide 39

4 Define user interfaces using declarative XML

title="OAUTH AUTHORIZATION REQUEST AUTHN SELECT CIRCUIT" />
<TextAttribute field="subjectAttr"
label="OAUTH AUTHORIZATION REQUEST AUTHN SELECTOR" />
</panel>
</RadioGroupAttribute>
</group>
</panel>
</tab>
<tab label="OAUTH AUTHZ CODE_GENERATION">
<panel>
<panel columns="3" fill="false">
<ReferenceSelector field="authzCodeCache"
selectableTypes="AuthzCodePersist"
searches="0OAuth2StoresGroup, AuthzCodeStoreGroup"
label="OAUTH AUTHORIZATION REQUEST STORE_ CODE"
title="OAUTH AUTHORIZATION REQUEST CHOOSE_ CACHE"
required="true" />
</panel>
<panel columns="2" fill="false">
<TextAttribute field="accessCodeTemplateLocation"
label="ACCESS_CODE_TEMPLATE LOCATION"
required="true" />
</panel>
<group label="OAUTH AUTHORIZATION REQUEST GENERATE_CODE"
columns="4" fill="false">
<NumberAttribute field="authzCodeLength"
label="AUTHZ CODE_LENGTH"
required="true" min="10" />
<NumberAttribute field="authzCodeExpiresInSecs"
label="AUTHZ CODE_EXPIRES SECS"
required="true" max="600" />
</group>
</panel>
</tab>
<tab label="OAUTH ACCESS TOKEN_ GENERATION">
<scrollpanel>
<panel>
<include resource="accesstokengenerationtemplate.xml" />
<include resource="refreshtokentemplate.xml" />
<include resource="scopestemplate.xml" />
</panel>
</scrollpanel>
</tab>

</tabFolder>
</panel>
</ui>

This section describes some of the elements declared in the preceding XML file. For a complete
listing of all the UI elements and bindings available, see Declarative UI reference on page 85.

Axway API Gateway 7.6.2 Developer Guide 40

4 Define user interfaces using declarative XML

This declarative XML file declares that the main panel of the dialog spans two columns. All the labels
are obtained from the associated resources.propertiesfile.

The <panel> tag renders an SWT Composite widget, which is usually employed to group other
widgets.

The <NameAttribute> tag renders an SWT Label and accompanying Text widget. A NAME label
must exist in the appropriate resources.properties file.

The <tabFolder> and <tab> attributes produce a tab folder with tabs using the labels supplied.

In the first tab it creates a text box and a group of two radio buttons. Beside the second radio button
it createsa <ReferenceSelector>. The<ReferenceSelector> tag rendersan SWT
Label, Text, and Button control. When clicked, the button displays a reference browser to allow the
user to easily select the required entity reference. The following table shows the main
<ReferenceSelector> tag attributes.

Name Description

selectableTypes Specifies the entity types (as a comma separated list) that are
selectable in the TreeViewer displayed in the Reference Selector dialog.

searches Specifies the entity types (as a comma separated list) that are
searchable for entities of those types specified by the
selectableTypes attribute.

After the <ReferenceSelector>, it creates another text box to store the subject.

In the second tab it creates another <ReferenceSelector>, followed by a text box and a
group of two <NumberAttribute> tags. The <NumberAttribute> tagsrenderan SWT
Label and accompanying Text widget. The Text widget only accepts numbers as input.

The third tab includesa <scrollpanel>tag. The <scrollpanel> tag renders an SWT
ScrolledComposite widget. When rendered, the control automatically calculates the extent of its
children so that the scroll bars are rendered correctly.

One of the following tags must be a direct child of <scrollpanel>:
¢ <panel>
» <group>
e <tabFolder>

For the Access Token Details tab it uses the <panel> tag. It also uses the <include> tag that
allows another declarative XML file to be included inline in the parent including XML file.

For the remaining tabs it uses the <include> tag but introduces a new <ButtonAttribute>
tag in the fourth tab. The <ButtonAttribute> tag renders an SWT Button widget with the
SWT . PUSH style applied, backed by the specified entity field.

Axway API Gateway 7.6.2 Developer Guide 41

Unit test a filter using the
Traffic Monitor API

The following example shows you how to create JUnit tests to test a custom filter using the Traffic
Monitor APL. Any JUnit test classes you write should extend and use the existing test classes that are
shipped with API Gateway, as these test classes provide several assertions that are used to evaluate
the responses returned.

The two main classes to use are:

e TestClientResponse — Uses Jersey client APIs to send GET and POST requests to API

Gateway. The JAR files can be found in the INSTALL
DIR/apigateway/system/1lib/modules directory.

TrafficMonitorClient — Used to invoke the Traffic Monitor REST API, which monitors
the traffic in and out of the API Gateway, and evaluate the responses returned. These classes are
contained in testClient. jar, which can befound in the INSTALL
DIR/apigateway/system/1ib/ directory.

Note A Node Manager and an API Gateway instance must be running before the JUnit tests can

be run.

Write a JUnit test for the Health Check policy

filters

Perform the following steps to write a JUnit test for the Health Check policy filters:

1.

Create a test class called TestHealthCheck. It should extend the
TestClientResponse utility class, which contains several assertion methods that can be
used to test the client responses returned from a web resource. For example:

import com.vordel.ops.TestClientResponse;

public class TestHealthCheck extends TestClientResponse {

Within the setup method, create a new instance of a
com.vordel.ops.TrafficMonitorClient. Thisclient contains several assertion

methods that can be used to evaluate the response based on the traffic information in and out
of the API Gateway, and the CorrelationId.

Axway API Gateway 7.6.2 Developer Guide 42

5 Unit test a filter using the Traffic Monitor API

@BeforeClass
public static void setup() throws NodeManagerAPIException {
client = new TrafficMonitorClient ("https", "localhost", "8090",
SERVER ID, USERNAME, PASSWORD) ;

3. Create a test case that invokes a request and evaluates the response returned using the
TrafficMonitorClient. Each filter of the policy can be evaluated to determine if it
passed or failed.

import javax.ws.rs.core.Response;

@Test
public void testHealthCheck() {

// Execute health check policy
Response response = get ("http://localhost:8080/healthcheck") ;

assertStatusCode (response, 200);

// Get its correlation id.
String correlationId = getCorrelationId(response);

// check HTTP header
assertContainsHeader (response, "Host");

// check HTTP header and value
assertContainsHeaderWithValue (response, "Host", "localhost:8080");
// Check that Set Message and Reflect Filters pass.
client.assertFilterPassed(correlationId, "Set Message", "Reflect");

// Ensure fault handlers did not fire.
client.assertFilterOfTypeDidNotExecute (correlationlId, "GenericError");
client.assertFilterOfTypeDidNotExecute (correlationId, "JSONError");
client.assertFilterOfTypeDidNotExecute (correlationId, "SOAPFault");

client.assertNFiltersPassed (correlationId, 2);
client.assertNFiltersFailed(correlationId, O0);

For more information on the client assertion methods, go to API Gateway Javadoc available from
Axway Support at https://support.axway.com.

Axway API Gateway 7.6.2 Developer Guide 43

https://support.axway.com/htmldoc/1444954
https://support.axway.com/

Java interfaces for extending 6
APl Gateway

This section describes the following Java interfaces that can be used to extend API Gateway:

« LoadableModule - Classes that implement this interface are used to instantiate long-lived
objects in the API Gateway process. These objects can be loaded at startup or when a new
configuration is deployed, and can be unloaded at shutdown.

« MessageCreationListener — Classes that implement this interface are used to track message
creation.

« Messagelistener — Classes that implement this interface are used to to track the changesin a
message as it flows through API Gateway.

This section also provides examples of how to implement these interfaces.

Create a loadable module

This section describes the LoadableModule interface, and provides an example of a loadable
module class that implements the interface. Another example of a class that implements
LoadableModule can be found in the DEVELOPER _
SAMPLES/FilterInterceptorLoadableModule directory.

LoadableModule interface

The LoadableModule interface provides methods that are invoked during startup or shutdown
of the API Gateway, or when a new configuration is deployed.

ALoadableModule class can be loaded at startup, or when a new configuration is deployed,
and can be unloaded at shutdown. Loadable modules are used to instantiate long-lived objects in
the API Gateway server process (for example, a transport listener, a cache manager, an embedded
broker, and so on).

The loadable module object itself is informed when it is loaded, reconfigured, and unloaded. The
order in which all loadable modules are loaded and configured is specified explicitly with a
loadorder field in the entity type description associated with that loadable module. If your
loadable module depends on another loadable module then it must have a load order which is
higher than the module on which it depends.

Axway API Gateway 7.6.2 Developer Guide 44

6 Java interfaces for extending API Gateway

The base LoadableModule interface has three methods. These are used on startup of the API
Gateway, on shutdown of the API Gateway, or when a new configuration is deployed to the API
Gateway. The following example shows the methods.

public interface LoadableModule {

/**
Load a module into the process.
@param parent Loadable modules may nest - @parent provides access to
the containing LM, or is null for a top-level module.
* @param entityType - The actual type of the entity that caused this
* class to be constructed.
*/
public void load(LoadableModule parent, String entityType)
throws FatalException;
/**
* Unload the module from the process. This is called once
* when the module is no longer required.
*/
public void unload() ;

/**
* Configure the loadable module. Called if the entity for the
* object changes.

* Note that currently, modules are unloaded and reloaded for each

*
*/
public void configure (ConfigContext pack, Entity object)

refresh - this behaviour should not be relied upon.

throws EntityStoreException,FatalException;

A loadable module is normally designed as a singleton object so that only one instance exists. The
same instance is returned to all filters accessing the loadable module. (For example, the
GlobalProperties classis global and there is only one instance that is accessible to all parts of
the application.)

Loadable module classes can be subclassed to provide extra information. For example, the
TransportModule class provides settings to indicate what traffic information should be
recorded for a specific protocol.

You can load a type definition for a LoadableModule class using the ES Explorer tool (see Load
a type definition on page 63). You can also view the LoadableModule classes in the ES Explorer
(see Use the ES Exploreron page 63).

Axway API Gateway 7.6.2 Developer Guide 45

6 Java interfaces for extending API Gateway

LoadableModule example -
TimerLoadableModule

This section describes how to create a loadable module using a simple example. The
TimerLoadableModule class creates a timer and traces a message to the trace output at a set
interval.

There are two parts to building this example:
1. Create the TypeDoc definition for the loadable module on page 46

2. Create the loadable module implementation classon page 47

Create the TypeDoc definition for the loadable module

A TypeDoc is an XML file that contains entity type definitions. Entity type definitions describe the
format of data associated with a configurable item. For more details on entity types, see Entity types
on page 61.

All TypeDocs for LoadableModule classes must:

» Extend the LoadableModule type or one of its subtypes (such as
NamedLoadableModule)

« Define a constant LoadableModule class

« Definethe 1oadorder thatindicates in what order the loadable module is loaded and
configured

« List the configuration fields for the entity

The following definition lists the various fields that form the configuration data for the
TimerLoadableModule class.

<entityType name="TimerLoadableModule" extends="NamedLoadableModule">

<constant name=" version" type="integer" value="0"/>

<constant name="class" type="string"

value="com.vordel.example.TimerLoadableModule "/>

<constant name="loadorder" type="integer" value="20"/>

<field name="delaySecs" type="integer" cardinality="1" default="30"/>

<field name="periodSec" type="integer" cardinality="1" default="10"/>

<field name="textMessage" type="string" cardinality="1" default="Hello world"/>
</entityType>

In this definition:
« delaySecs — Delay in milliseconds before task is to be executed
« periodSec — Timein milliseconds between successive task executions

» textMessage — Message to be output to the trace file

Axway API Gateway 7.6.2 Developer Guide 46

6 Java interfaces for extending API Gateway

Create the loadable module implementation class

The API Gateway server-side implementation class is responsible for creating a timer and scheduling
a task for repeated fixed-rate executions, beginning after a specified delay. Subsequent executions
take place at regular intervals, separated by a specified period.

The following code shows the members and methods of the TimerLoadableModule class:

public class TimerLoadableModule implements LoadableModule {

Timer timer = null;
int initialDelay = 30 * 1000;
int period = 10 * 1000;

String message = "Hello world";

@QOverride
public void configure (ConfigContext solutionPack, Entity entity)

throws EntityStoreException {

if (timer != null)

timer.cancel () ;

// load the configuration settings
initialDelay = entity.getIntegerValue ("delaySecs") * 1000;
period = entity.getIntegerValue ("periodSec") * 1000;
message = entity.getStringValue ("textMessage");
TimerTask task = new TimerTask() {

public void run() {

Trace.error (message) ;

bi
timer.scheduleAtFixedRate (task, initialDelay, period);

@QOverride
public void load(LoadableModule loadableModule, String argl) {

timer = new Timer () ;

@QOverride

public void unload() {
// clean up
if (timer != null)

timer.cancel () ;

The 1oad method creates a Timer instance. The unload method terminates the timer,
discarding any currently scheduled tasks. It does not interfere with a currently executing task (if it
exists). When the timer is terminated, its execution thread terminates gracefully, and no more tasks
can be scheduled on it.

Axway API Gateway 7.6.2 Developer Guide 47

6 Java interfaces for extending API Gateway

The configure method loads the configuration data and creates a new TimerTask that traces
a message to the trace output and schedules this task to be executed at a repeated fixed rate,
beginning after a delay, with subsequent executions to take place at regular intervals, separated by a
specified period.

See Create a message listeneron page 49 for another example of a loadable module class that is
used for monitoring messages passing through policies in an interceptor.

Note Currently, each loadable module is unloaded and recreated at reconfiguration time, so that
the configure method is called only once for each loadable module. This behavior

should not be relied upon.

Create a message creation listener

This section describes the MessageCreationListener interface, and provides an example of
a message creation listener class that implements the interface. The sample code can be found in the
DEVELOPER SAMPLES/FilterInterceptorLoadableModule directory.

MessageCreationListener interface

TheMessageCreationListener interface provides a method that is invoked when a message
is created.

AMessageCreationListener classis used to track message creation. It is called when a
message is created but before the originator of the message has populated any properties.

An example of its usage can be seen in the following FilterInterceptor class:

public class FilterInterceptor implements LoadableModule,
MessageCreationListener, MessageListener, FilterInterceptorMBean

@QOverride
public void load(LoadableModule parent, String typeName) {
Message.addCreationListener (this) ;

@QOverride
public void unload() {
Message.removeCreationListener (this) ;

@QOverride
public void messageCreated (Message msg, Object context) {

msg.addMessagelistener (this) ;

Axway API Gateway 7.6.2 Developer Guide 48

6 Java interfaces for extending API Gateway

The message creation listener is added when the loadable module is loaded, and removed when it is
unloaded. In this example, it adds a message listener when a message is created.

Create a message listener

This section describes the MessageListener interface, and provides an example of a message
listener class that implements the interface. The sample code can be found in the DEVELOPER
SAMPLES/FilterInterceptorLoadableModule directory.

Messagelistener interface

The MessageListener interface provides a set of callbacks that are invoked during the
processing of a message as it passes through the processing engine of the API Gateway. The
MessageListener interface provides callbacks which are invoked at certain pointsin the
processing, for example just before a policy (circuit) is run, or before and after a message is
processed by a filter. A message listener can be used to track the changes in a message as it flows
through API Gateway, or to monitor the status of policies or filters as messages pass through them.
Commonly it is used to gather statistics on message processing, which can then be used to give an
indication of the status of API Gateway.

The MessageListener interface defines several methods that are invoked in conjunction with
the methods or lifecycle events of the message. These include:
« Policy processing

o preCircuitProcessing — Called when the message originator has completed
initializing the message, and API Gateway is about to start processing in the policy-
space.

o postCircuitProcessing — Called when all processing in the policy-space is
completed.

« Policy invocation
o preCircuitInvocation — Called before the first filter in a given policy is invoked.

o postCircuitInvocation — Called after a chain of filters in the policy has been
invoked.

Axway API Gateway 7.6.2 Developer Guide 49

6 Java interfaces for extending API Gateway

« Filter invocation

o preFilterInvocation — Thismethod is called immediately before a filter's

MessageProcessor isinvoked.

o postFilterInvocation — This method is called when afilter's
MessageProcessor hasfinished execution.

« abortedCircuitInvocation — Called if the policy exits because of a fault with one of
the filters within it.

e preFaultHandlerInvocation — Called before attempting to handle a previous
CircuitAbortException with specific fault-handling.

« onMessageCompletion — Called when a message has fully exited the system.

MessageListener example - Filterinterceptor

This section describes how to create a message listener using a simple example. The
FilterInterceptor class countsthe number of messages which pass, fail, or abort during
processing of a request in the API Gateway.

There are two parts to building this example:
1. Create the TypeDoc definition for the message listeneron page 50

2. Create the message listener implementation classon page 51

Create the TypeDoc definition for the message listener

A TypeDoc is an XML file that contains entity type definitions. Entity type definitions describe the
format of data associated with a configurable item. For more details on entity types see Entity types
on page61.

In thisexample, the FilterInterceptorLoadableModule extends
NamedLoadableModule. For more information on loadable module TypeDoc definitions, see
Create the TypeDoc definition for the loadable module on page 46.

The following definition lists the various fields that form the configuration data for the
FilterInterceptorLoadableModule classand declares an instance of the type.

<entityStoreData>
<entityType name="FilterInterceptorLoadableModule" extends="NamedLoadableModule">
<constant name="class" type="string"
value="com.vordel.interceptor.FilterInterceptor"/>
<constant name="loadorder" type="integer" value="1000000"/>
</entityType>
</entityStoreData>

<entityStoreData>

Axway API Gateway 7.6.2 Developer Guide 50

6 Java interfaces for extending API Gateway

<entity type="FilterInterceptorLoadableModule">
<fval name="name">
<value>Filter Invocation Callback Listener</value>
</fval>
</entity>
</entityStoreData>

<typeSet>
<typedoc file="FilterInterceptorLoadableModule.xml"/>
<typedoc file="instance.xml"/>

</typeSet>

ToaddtheFilterInterceptorLoadableModule type to the primary entity store, you can
use the publish.py script. For example:

> cd INSTALL DIR/apigateway/samples/scripts

> ./run.sh publish/publish.py

-1 DEVELOPER SAMPLES/FilterInterceptorLoadableModule/conf/typedoc/typeSet.xml
-t FilterInterceptorLoadableModule

-g "QuickStart Group" -n "QuickStart Server"

Alternatively, you can use the ES Explorer to add the type. For more information, see Use the ES
Exploreron page 63.

Create the message listener implementation class

The API Gateway server-side implementation class is responsible for monitoring message creation
and lifecycle events. On each lifecycle event it writes messages to the trace output.

The following is an extract of the FilterInterceptor class that can be found in the
DEVELOPER SAMPLES/FilterInterceptorLoadableModule/src directory.

public class FilterInterceptor implements LoadableModule,
MessageCreationListener, MessageListener, FilterInterceptorMBean

@Override
public void load(LoadableModule parent, String typeName) {

Message.addCreationListener (this) ;

@Override
public void unload() {
Message.removeCreationListener (this);

Axway API Gateway 7.6.2 Developer Guide 51

6 Java interfaces for extending API Gateway

@Override
public void messageCreated (Message msg, Object context) {

msg.addMessageListener (this) ;

@Override
public void preCircuitInvocation(Circuit circuit, Message message,
Object context)
Trace.info ("Circuit ["+circuit.getName ()+"] about to invoke message: "

+message.correlationId+", caller context is: "+context);

@Override
public void postCircuitInvocation (Circuit circuit, Message message,
boolean result, Object obj)
Trace.info ("Circuit ["+circuit.getName ()+"] has finished with message: "
+message.correlationId+", result is :"+(result?"PASSED": "FAILED"));

@Override
public void preFilterInvocation(Circuit circuit, MessageProcessor processor,

Message message, MessageProcessor caller, Object obj)

Filter f = processor.getFilter();
String type = f.getEntity() .getType () .getName () ;

Trace.info ("["+f.getName () +" ("+type+")] msg:"+message.correlationId) ;

@Override
public void postFilterInvocation (Circuit circuit, MessageProcessor processor,

Message message, int resultType, MessageProcessor caller, Object obj)

Trace.info (" ["+processor.getFilter () .getName ()+"] msg:"

+message.correlationId+" Result: "+toString(resultType));

@Override
public void onMessageCompletion (Message message) {

Trace.info ("Message ["+message.correlationId+"] completed.");

Axway API Gateway 7.6.2 Developer Guide 52

6 Java interfaces for extending API Gateway

AMessageListener isregistered with a message instance by first listening for a message
creation event viathe addCreationlListener (MessageCreationListener) method,
which is called during the loading of the FilterInterceptor, and then calling the
addMessageListener (MessageListener) method on the message parameter. The
message creation listener is unregistered during the unloading of the FilterInterceptor.

The onMessageCompletion method monitors the completion of a message in a policy so that
resources can be cleaned up when the message is no longer useful. The preprocessing and
postprocessing interceptor methods output trace information.

The following is an example of the trace output fromthe FilterInterceptor during the
execution of a filter:

INFO 26/Feb/2013:11:26:12.064 [1698] Circuit [Send Instant Message] about to invoke
message: 8a8ef28f512c9bce01980000, caller context
is: com.vordel.dwe.http.HTTPPlugin@2b3fab

INFO 26/Feb/2013:11:26:14.017 [1698] [Jabber (JabberFilter)]
msg:8a8ef28£512¢c9bce01980000

INFO 26/Feb/2013:11:26:16.658 [1698] [Jabber]
msg:8a8ef28£512c9bce01980000 Result: SUCCESS

INFO 26/Feb/2013:11:26:20.799 [1698] Circuit [Send Instant Message] has finished
with message: 8a8ef28f512c9bce01980000, result is :PASSED

Note To see the above output, you must build the FilterInterceptorLoadableModule sample and
add theresulting interceptor. jar to the API Gateway CLASSPATH. See the
README . TXT for more information on building the sample.

The following is a sample style sheet that can be used with the removeType script in the API
Gateway to removethe FilterInterceptorLoadableModule and itsinstances from the
primary entity store.

<?xml version="1.0" ?>
<stylesheet xmlns="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"
xmlns:es="http://www.vordel.com/2005/06/24/entityStore">
<template match="comment () |processing-instruction()">
<copy />
</template>
<template match="@*|node ()">
<copy>
<apply-templates select="@*|node()" />
</copy>
</template>
<!-- Removing type and instances -->
<template match=
"/es:entityStoreData/es:entityType [@name='FilterInterceptorLoadableModule']"/>
<template match=
"/es:entityStoreData/es:entity[@type='FilterInterceptorLoadableModule']"/>
</stylesheet>

Axway API Gateway 7.6.2 Developer Guide 53

6 Java interfaces for extending API Gateway

You can remove the type from the primary store by running the following command:

> cd INSTALL DIR/apigateway/samples/scripts

> ./run.sh unpublish/unpublish.py

-i DEVELOPER SAMPLES/FilterInterceptorLoadableModule/conf/remove.xslt
-t FilterInterceptorLoadableModule

-g "QuickStart Group" -n "QuickStart Server"

You can use the ES Explorer tool to view new types that were added, or to verify that types were
removed. For more information, see Use the ES Exploreron page 63.

Axway API Gateway 7.6.2 Developer Guide 54

Access configuration values
dynamically at runtime

You can access configuration values dynamically at runtime using selectors. A selector is a special
syntax that enables API Gateway configuration settings to be evaluated and expanded at runtime,
based on metadata values (for example, from message attributes, a Key Property Store (KPS), or
environment variables).

For example, when a HTTP request is received, it is converted into a set of message attributes. Each
message attribute represents a specific characteristic of the HTTP request, such as the HTTP
headers, HTTP body, and so on.

For more information on using selectors, see the API Gateway Policy Developer Guide.

Example selector expressions

The API Gateway Policy Developer Guide includes some examples of selector expressions. The
following table lists some more complex examples.

Selector expression Result

${kps.matrix.row.column} For a KPS with multiple read keys, the

${kps.matrix[“row”] [“column”]} values for each key are provided in order.
The result of the expression is also
indexable:

set property test = ${kps.matrix.row}

S{test[“column”] } looks up the KPS
for [row/column].

${content.body.getParameters () .get ("grant Gets the HTTP form post field called
type") } grant_type.

Axway API Gateway 7.6.2 Developer Guide 55

7 Access configuration values dynamically at runtime

Selector expression

Result

${content.body.getJSON() .get ('access

token') .getTextValue () }

${content.body.getJSON () .toString() }

$S{environment.VINSTDIR}

S{http.path[2]}

If abody isof type application/json
then it is automatically treated as a
com.vordel.mime.JSONBody. A
JSONBody object returns an
com. fasterxml.jackson.databi
nd.JsonNode object viaa get JSON ()
call.
For more information, see the Javadoc for
JsonNode class.
For example, if the body contains the
following JSON content:
{
"access token":"2YotnFZFEj",
"token Eype":"example",
"expir;siin":3600

}

this selector results in the value
2YotnFZFE].

If a body is of type

com.vordel .mime.JSONBody, this
selector converts the JSON contained in the
body to a string value.

Accesses the environment variable
VINSTDIR.

If you have the filter Extract REST
Request Attributes in your policy, this
filter adds the incoming URI to the message
whiteboard as a String array, so that you
can index into the path. If the incoming
pathis /thisisa/test, using thistype
of selector results in the following
attributes on the whiteboard:
$S{http.path[1]} = thisisa
S{http.path[2]} = test

Database query results

You can use the Retrieve from or write to database filter to retrieve user attributes from a
database or write user attributes to a database. You can select whether to place database query

Axway API Gateway 7.6.2

Developer Guide 56

http://static.javadoc.io/com.fasterxml.jackson.core/jackson-databind/2.7.4/index.html?com/fasterxml/jackson/databind/JsonNode.html
http://static.javadoc.io/com.fasterxml.jackson.core/jackson-databind/2.7.4/index.html?com/fasterxml/jackson/databind/JsonNode.html

7 Access configuration values dynamically at runtime

results in message attributes on the Advanced tab of the filter. By default, the Place query
results into user attribute list option is selected. For more information on the Retrieve from
or write to database filter, see the API Gateway Policy Developer Guide.

The query results are represented as a list of properties. Each element in the list represents a query
result row returned from the database. These properties represent pairs of attribute names and
values for each column in the row. The Prefix for message attribute field in the filter is required
to name the list of returned properties (for example, user).

Results in user attribute list

The following table shows some example selectors when the option Place query results into
user attribute list is selected.

Selector expression Result

S{user[0] .NAME } John

S{user[0] .LASTNAME } Kennedy

${user[1l] .NAME} Brian

S{user[1].LASTNAME } 0O’ Connor

You can also use standard Java function calls on the attributes. For example:

e ${user.size ()} —Number of properties (number of rows) retrieved from the database

e S{user[0] .NAME.equals (“John”) } — Returns true if the NAME attribute (value of
column NAME in first row) is *John”

For more information, seethe java.util.ArrayListand java.lang.String class
interfaces.

Results not in user attribute list

The following table shows some example selectors when the option Place query results into
user attribute list is not selected.

Selector Expression Result

S{user.NAME[0] } John

$S{user.LASTNAME [0] } Kennedy

S{user.NAME[1]} Brian

$S{user.LASTNAME [1]} O’ Connor

Axway API Gateway 7.6.2 Developer Guide 57

7 Access configuration values dynamically at runtime

You can also use standard Java function calls on the attributes. For example:

e ${user.NAME.size ()} —Numberof NAME attributes (number of rows with column
NAME) retrieved from the database

e S{user.NAME[0] .equals (“John”) } —Returns true if the first NAME attribute (value of
column NAME in first row) is “John”

For more information, seethe java.util.ArrayListand java.lang.String class
interfaces.

LDAP directory server search results

You can use the Retrieve from directory server filter to retrieve user profile data. For more
information on the Retrieve from directory server filter, see the API Gateway Policy Developer
Guide.

The filter can look up a user and retrieve that user's attributes represented as a list of search results.
Each element of the list represents a list of multivalued attributes returned from the directory server.
The Prefix for message attribute field in the filter is required to name the list of search results
(for example, user).

The following table shows some example selectors:

Selector Expression Result

S{user[0] .memberOf [0] } CN=Operator,OU=Sales

S{user[0] .memberOf[1]} CN=Developer, OU=Dev

S{user[0] .memberOf[2]} CN=Operator, OU=Support

S{user[1l] .memberOf[0]} CN=Operator,OU=Sales

You can also use standard Java function calls on the attributes. For example:

e S${user.size ()} —Number of search results returned by the LDAP directory server

e S{user[0] .memberOf.size ()} — Numberof memberOf attribute values returned in
the search result

e ${user[0] .memberOf.contains (“"CN=Operator,OU=Sales”) } —Returnstrueif
one of the returned memberOf attributesis “"CN=Operators, OU=Sales”

e S{user[0] .memberOf[0].equals (“"CN=Operator,QU=Sales”) } —Returnstrue
if the first membe rOf attributeis "CN=Operators,OU=Sales”

For more information, see java.util.ArrayList and java.lang.String class
interfaces.

Axway API Gateway 7.6.2 Developer Guide 58

Key Property Store

A Key Property Store (KPS) is an external data store of API Gateway policy properties, which is
typically read frequently, and seldom written to. Using a KPS enables metadata-driven policies,
whereby policy configuration is stored in an external data store, and looked up dynamically when
policies are executed.

For more information on KPS, see the API Gateway Policy Developer Guide and also the API Gateway
Key Property Store User Guide.

Axway API Gateway 7.6.2 Developer Guide 59

Entity Store

Configuration data for API Gateway is stored in the Entity Store (ES). The Entity Store is an XML-
based store that holds all configuration data required to run API Gateway. It contains policies,
filters, certificates, resources, and so on. The Entity Store for a group of API Gateways can be found

at the following location:

INSTALL DIR/apigateway/groups/GROUP ID/conf/CONFIG UID

API Gateway runs with a number of separate stores that are combined as a federated entity store for
the API Gateway’s configuration.

The federated entity store is made up of component stores. Each component store is responsible for
one or more branch pointsin the configuration tree. Each component store must be consistent in its

own right:

« It must have all the entity types (see Entity typeson page 61) required to describe its

component entities

« It must also have valid hard references within. Hard references are fields that refer to other
entities via their real primary keys (PKs). Soft references allow an entity in one store to reference
an entity in another store. This is done via Portable ESPKs, which the federated entity store has
the added ability, above other store flavors, to resolve to the correct entity when calling
getEntity (ESPK pk).

The following table lists the XML-based stores:

File name

Description

CertStore.xml

configs.xml

EnvSettingsStore.xml

ExtConnsStore.xml

ListenersStore.xml

PrimaryStore.xml

Contains certificates and private keys. Private keys are encrypted
with the API Gateway passphrase.

The federated store which imports all other component stores.
Contains environment settings for the configuration.

Contains the external connection information (for example,
database, LDAP, and so on) that the runtime might connect to.

Contains the configuration for the HTTP ports and protocols that
API Gateway listens on to receive messages to be processed.

Contains the policies and filters to be applied to messages received
by API Gateway.

Axway API Gateway 7.6.2

Developer Guide 60

9 Entity Store

File name Description
UserStore.xml User store containing user names and passwords and associated
user roles.

ResourcesRepository.xml Contains the resource information.

Entity types
An entity typeis a description of an entity in the Entity Store. An entity type defines the following
properties for a given entity:
« Constant fields, specifically name and value.
« Fields, specifically name, data type, and cardinality.

The entity type is known by its name, and is located in its inheritance tree by its parent type. All
entity types are defined within the top-level <entityStoreData> element.

The following are additional properties of entity types:

« Each entity isan instanceof an EntityType.

« Each entity is of exactly one entity type, and has a link to its defining type.

« Entity types can inherit properties from zero or one other entity types.

o TherootEntityType iscalled Entity, so abasic entity isof type Entity.
Afield in an entity can be of the following type:

« boolean

« string

- integer

. long

« utctime

« binary

« encrypted

« reference to another entity (either in the same component entity store or across a component
store in the federated store)

A field must be assigned a cardinality. The possible cardinalities are:
o zeroorone(?)
« zero or many (*)
o Oneormany (+)

. one(1)

Axway API Gateway 7.6.2 Developer Guide 61

9 Entity Store

The following shows an example.

<field name="name" type="string" cardinality="1" isKey="true" />

<field name="isEnabled" type="boolean" cardinality="1" default="true"/>
<field name="hosts" type="string" cardinality="*"/>

<field name="timeout" type="integer" cardinality="?" default="30000" />
<field name="certificates" type=""Certificate" cardinality="*" />

<field name="nextEntity" type="@Entity"/>

References to other entities

A field that refers to another entity within the same component entity store is called a hard
reference. For example:

<field cardinality="1" name="category" type="@Category">

A field that refers to another entity in another component entity store is called a soft reference. For
example:

<field cardinality="1" name="repository" type=""AuthnRepositoryBase"/>

Entity type definitions

Each configurable item has an entity type definition. The entity type definition is defined in an XML
file known as the TypeDoc.

Entity types are analogous to class definitions in an object-oriented programming language. In the
same way that instances of a class can be created in the form of objects, an instance of an entity
type can also be created. Therefore it is useful to think of the entity type defined in a TypeDoc as a
header file, and the entity itself as a class instance. All entities and their entity type definitions are
stored in the Entity Store.

Every filter requires specific configuration data to perform its processing on the message. For
example, a filter that extracts the values of two elements from a SOAP message, and adds them
together, must be primed with the names and namespaces of those two elements.

Because afilter is a configurable item, it requires a new XML TypeDoc to be written containing an
entity type definition for it. The entity type for a filter contains a set of configuration parameters and
their associated data types and default values.

When an instance of the filter is added to a policy using Policy Studio, a corresponding entity
instance is created and stored in the Entity Store. Whenever the filter instance is invoked, its
configuration data is read from the entity instance in the Entity Store.

Axway API Gateway 7.6.2 Developer Guide 62

9 Entity Store

Use the ES Explorer

ES Explorer is a registry editor type tool which allows you to connect directly to an Entity Store
(ES). Within the ES explorer you can perform various create, read, update, delete (CRUD)
operations on the entities, and view the available types in the Entity Store. To open a federated
entity store in ES Explorer, load the configs. xml file. Alternatively, to open a component entity
store, load the XML file (for example, PrimaryStore.xml).

To start the ES Explorer, run this command:

INSTALL DIR/apigateway/posix/bin/esexplorer

When ES Explorer is started you can load an entity store by selecting Store > Connect from the
menu. In the Connect to EntityStore dialog browse to either the federated or component entity
store to be opened.

Load a type definition

You can import a type definition or entity instances using ES Explorer by using a catalog called a
typeset. The typeset is essentially a list of references to other files, each of which can contain
type definitions or previously exported entity definitions. While you can import entity instances into
the federated store, you must be careful when adding types to ensure that they get added to the
appropriate component store, as each component store is responsible for only a subset of types
visible from the federated view.

For example, if your TypeDoc is describing an entity type that defines a custom filter then you
should add this to the Primary Store (PrimaryStore.xml), which is responsible for storing
policies and filters. If your TypeDoc describes a listener for messages then you would add it to the
Listener Store (ListenersStore.xml).

If you have followed the preceding steps to connect to a component store, you can add a typeset by
right-clicking on the component store icon and selecting Load a Type Set. In the dialog you can
specify the location of the t ypeset . xm1 file to add. This adds all types referenced by the typeset
into the component store.

For an example of how to build up a typeset and have it indirect to a type definition for import, see
the sample script publish. py, which is available in the INSTALL
DIR/apigateway/samples/scripts/publish directory. By default the typeset .xml
fileincludesa SimpleFilter.xml file which contains a SimpleFilter entity type definition.

Locate entities using shorthand keys

Entities in the Entity Store can be located using shorthand keys. In the ES Explorer, you can right-
click on a node and select Print PortableESPK (shorthand) to print out the shorthand key for it.
For example, the following is the shorthand key for the Set Message filter in the Health Check

policy:

Axway API Gateway 7.6.2 Developer Guide 63

9 Entity Store

/[CircuitContainer]name=Policy Library/[FilterCircuit]name=Health Check/

[ChangeMessageFilter]name=Set Message

You can then use the Find an Entity action to use the key to find that entity, or you can fashion a
more general search string to find entities at a given level.

The following table shows some examples of shorthand keys:

Shorthand key Description

/[CircuitContainer]**/[FilterCircuit] Get all filter circuits at
all levels.

/[CircuitContainer]**/[FilterCircuit]/[Reflector] Get all filters of type
Reflector.

/[CircuitContainer]**/[FilterCircuit]/[Reflector]name=Reflect QGet all filters of type
Reflector, but restricted
to Reflector filters with
thenameReflect.

/[CircuitContainer]**/[FilterCircuit] Get all policiesin a

/[FilterCircuit] configuration (you
need two shorthand
keys).

Note Forward slashes must be escaped, for example:

/ [NetService]name=Service/ [HTTP] name=Management Services/
[ServletApplication]uriprefix=\/manager\//[Servlet]uri=webManager

Axway API Gateway 7.6.2 Developer Guide 64

Debug custom Java code 1 O
with a Java debugger

You can debug custom Java code running in API Gateway (for example, code for a custom filter), by
attaching a remote debugger to API Gateway. To attach a remote debugger, add a JVM argument to
API Gateway and restart it.

To change the JVM settings of an API Gateway instance, follow these steps:

1. Createafilecalled jvm. xm1l in the following location:

INSTALL DIR/apigateway/groups/GROUP ID/INSTANCE ID/conf

2. Editthe jvm.xml file so that the contents are as follows:

<ConfigurationFragment>
<VMArg name="-Xrunjdwp:transport=dt socket, server=y,address=9999" />
</ConfigurationFragment>

3. Restart API Gateway.

When you restart the API Gateway instance with the above settings, it starts up and waits for a JVM
debugger to connect to the process on port 9999. You can connect to port 9999 of the API
Gateway instance using a Remote Java debug (for example, in the Eclipse IDE).

Axway API Gateway 7.6.2 Developer Guide 65

Get diagnostics output from 1 1
a custom filter

You can configure API Gateway to output detailed diagnostic information for a specific custom filter
by setting the trace level to DEBUG or DATA.

To change the trace level in Policy Studio, select the Server Settings node, and click General.
Select DEBUG or DATA from the Tracing level field, and click Save.

For more information on tracing and logging see "Configure API Gateway diagnostic trace" in the
API Gateway Administrator Guide

Add custom trace output to custom code

Note Some code extracts in this section are from the jabbe r sample that is no longer included
in the code samples supplied with API Gateway.

To add custom trace information to custom code, you can add Trace statements within your
code.

For example, the following code adds Trace statements to output the thread ID associated with
the chat, which corresponds to the thread field of the SMACK XMPP message to a custom Jabber
filter (see Write a custom filter using the extension kit on page 20).

import com.vordel.trace.Trace;

public class JabberProcessor extends MessageProcessor {

public boolean invoke (Circuit c, Message message)

throws CircuitAbortException ({

try {
Trace.debug ("Chat Thread ID is " + chat.getThreadID());
chat.sendMessage (messageStr.substitute (message)) ;

} catch (org.jivesoftware.smack.XMPPException ex) {

Trace.error ("Error Delivering block") ;

Axway API Gateway 7.6.2 Developer Guide 66

11 Get diagnostics output from a custom filter

The Chat Thread ID is output in the API Gateway trace file as follows:

DEBUG 10/Jun/2013:11:18:21.365
DEBUG 10/Jun/2013:11:18:22.880
DEBUG 10/Jun/2013:11:18:23.037
DEBUG 10/Jun/2013:11:18:23.037

milliseconds.

01f4
01f4
01f4
01f4

run filter [Jabber] {
Chat Thread ID is VSx1BO
} =1, filter [Jabber]

[
[
[
[Filter [Jabber] completes in 672

1
1
1
1

The trace level DATA can be used to provide more detailed information. To use the DATA level in the
preceding example, change the Trace . debug statementsto Trace . data statements.

Add custom log4j output to custom code

To output custom log4j information perform the following steps:

1. Updatethe 1og4j2.xml file, located in the INSTALL
DIR/apigateway/system/conf directory, to specify that the log4j appender sends
output to the API Gateway trace file. For example:

<Root level="debug">

<AppenderRef ref="STDOUT" />
<AppenderRef ref="VordelTrace" />
</Root>

2. Add log4j statements to your code. Log4j is already on the API Gateway CLASSPATH. The
following example shows the preceding code with log4j statements instead of Trace
statements:

import org.apache.log4j.Logger;

public class JabberProcessor extends MessageProcessor {
private static final Logger log = LogManager.getLogger

(JabberProcessor.class.getName ()) ;

public boolean invoke (Circuit c, Message message)

throws CircuitAbortException {

try {
log.debug ("Chat Thread ID is " + chat.getThreadID());
chat.sendMessage (messageStr.substitute (message)) ;

} catch (org.jivesoftware.smack.XMPPException ex) {

Trace.error ("Error Delivering block");

Axway API Gateway 7.6.2 Developer Guide 67

11 Get diagnostics output from a custom filter

The following is output in the API Gateway trace file:

<Date> <Time> [Thread-xx] DEBUG com.vordel.jabber.filter.JabberProcessor - Chat

Thread ID is XXXXXX

Axway API Gateway 7.6.2 Developer Guide 68

Enable APl Gateway with 1 2
JMX

Java Management Extensions (JMX) allows remote clients to connect to a JVM and manage or
monitor running applications in that JVM. MBeans are the controllable endpoints of your application
where remote clients can observe application activity as well as control their inner workings.

For more information on implementing an MBean interface, seethe FilterInterceptor
example. The sample code can be found in the DEVELOPER _
SAMPLES/FilterInterceptorLoadableModule directory. TheFilterInterceptor
classimplementsthe FilterInterceptorMBean interface.

After you have set up your MBean, you need to tell the JMX infrastructure about the MBean so that it
can be published to clients. This involves creating a unique name for the MBean and then registering
it with the MBeanServer. For example:

try {
MBeanServer mbs = ManagementFactory.getPlatformMBeanServer () ;
// Construct the ObjectName for the MBean we will register
ObjectName name = new ObjectName (
"example:type=FilterInterceptorMBean") ;
mbs.registerMBean (this, name) ;
} catch (Throwable t) {

Trace.error (t);

After you have set up your MBeans and registered them with the MBeanServer you can view them in
the management console that your JMX container supports (for example, JConsole). To use
JConsole, add the following JVM argument to API Gateway and restart it.

Follow these steps:

1. Create afilecalled jvm.xml in the following location:

INSTALL DIR/apigateway/groups/GROUP ID/INSTANCE ID/conf

2. Editthe jvm.xml file so that the contents are as follows:

<ConfigurationFragment>
<VMArg name="-Dcom.sun.management.jmxremote" />

</ConfigurationFragment>

3. Restart API Gateway.

Axway API Gateway 7.6.2 Developer Guide 69

12 Enable API Gateway with JMX

When you restart the API Gateway instance with the above settings you can connect using Java
Monitoring and Management Console (JConsole) and view your MBeans. Launch jconsole (an
executable in the bin directory of your Java JDK installation) and select the MBeans tab to see the

FilterInterceptorMBean listed on the left. You can see the message total, success, failure, and
abort counts.

Note In this case, the attributes are read-only, but in other cases they might be modifiable and
you can change their settings.

Axway API Gateway 7.6.2 Developer Guide 70

Automate tasks with Jython 1 3
scripts

API Gateway contains several sample scripts that let you automate various common administration
tasks. The scripts are based on the Java scripting interpreter, Jython (http://www.jython.org).
Scripts can be extended to suit your needs by following the Jython language syntax. All Jython
scripts can be found in the following location:

INSTALL DIR/apigateway/samples/scripts

To run a sample script, you can call the run shell in this directory and point it to the script to be
run. For example, to run the changeTrace. py sample script:

> cd INSTALL DIR/apigateway/samples/scripts

> ./run.sh config/changeTrace.py

The following table summarizes the Jython scripts that are available in the API Gateway installation.

Script category Description

analyze « Printsallist of all references in the API Gateway. For each reference it
shows what store it originates from and to.

« Checks if the API Gateway is locked down.

« Gets alist of unresolved references between entities in the API
Gateway.

apikeys « Shows how to send an API key and associated secret as query
parameters.

« Shows how to send an API key only as query parameters.
« Shows how to fetch a URL with HTTP basic authentication.
« Shows how to send a signed query string.

« Shows how to send an authenticated REST request.

cassandra « Converts all Cassandra-based data stores to file-based data stores and
redeploys.
certs « Adds a new certificate to the certificate store from different sources.

Axway API Gateway 7.6.2 Developer Guide 71

http://www.jython.org/

13 Automate tasks with Jython scripts

Script category Description

config « Removes the sample service listeners and policies from the API
Gateway.

« Connects to a particular process and toggles tracing for the
management port.

« Connects to the API Gateway and sets an address to bind to on a given
port of a given interface.

o UpdatesthemaxInputLen, maxOuputLen, and
maxRequestMemory configuration in Node Managers and API
Gateways.

environmentalize « Marks fields for environmentalization and creates associated
environment setting entries.

« Gets the fields that have been marked for environmentalizing and
outputs the associated value in environment settings.

« Removes fields marked as environmentalized.

« Creates a deployment archive from a policy package and an
environment package.

io « Imports and exports entities to and from an API Gateway
configuration.

json « Generates a JSON schema for a fully qualified class name.

migrate « Downloadsthe current . fed, .pol and . env archives via Node
Manager from an API Gateway.

« Creates a deployment package from policy and environment
packages. They can be obtained from a running API Gateway, from a
source code repository (for example, Git or SVN), or via USB or FTP
and so on.

« Demonstrates a promotion of configuration from the development
environment to the staging environment.

monitor « Prints the filter details of each policy executed in a transaction.

« Prints the success or failure status of each filter in a transaction.
oauth « Provides OAuth 2.0 support.

passport « Creates an Axway PassPort CSD based on the API service
configuration. An Axway Component Security Descriptor (CSD) file is
used when registering with Axway PassPort.

Axway API Gateway 7.6.2 Developer Guide 72

13 Automate tasks with Jython scripts

Script category Description

publish « Adds an entity type and any defined instances to an associated entity
store.

unpublish « Removes an entity type and any defined instances from an associated
entity store.

topology « Creates API Gateway instances in a group.

« Gets the domain topology from the Admin Node Manager.

« Gets the domain topology and outputs the IDs of the API Gateway
instances.

securityconstraints « Checks a configuration for FIPS, SuiteB, or SuiteBTS compliance.
users « Connects to a particular process and adds a new user to the user store.

WS « Registers a WSDL in an API Gateway.
« Lists the web services in an API Gateway.

« Removes a registered service from the API Gateway.

Java and Jython translations

The following table shows examples of translating Java to Jython.

Java Jython equivalent
import java.lang.Math; from java.lang import Math
Java does not support multiple inheritance. Jython supports multiple inheritance.

Axway API Gateway 7.6.2 Developer Guide 73

13 Automate tasks with Jython scripts

Java

Jython equivalent

Class declaration:

public class Hello {

private String name = "John Doe";

Hello (String name) {
this.name = name;

}

public void greeting() {

System.out.println("Hello" + name);

Variables can be public, protected, or private.

Variables have to be declared before use.

Class declaration:

class Hello:
def _ init (self, name="John
Doe") :

self.name = name

def greeting(self):

o

print "Hello, %s" % self.name

The init methodisthe
constructor, and you can pass it default
arguments for any arguments the user
does not supply, as with the name
argument. You can supply named
parameters when you instantiate a class
or call a method.

The self termis a reference to the
current instance of the class. It is the
equivalent of the Java thi s reference.
Calling it se1f isaJython convention.
You can use any name. Unlike Java,
Jython requires you to prefix any
instance variable with se1f. Failing to
provide the sel f prefix usually results
in an exception. When creating a
bound method, the first parameter to
the method is always self.

In Jython, variables and class methods
can either be public or private. There is
no protected level of visibility as there
isin Java. They are public by default.
To make them private, you can prefix
them with a double underscore. For
example, the following variable is
private:

self. name = name

Variables do not have to be declared
before use, nor do their types need to
be declared. (They do, however, have
to be assigned before use.) This is true
both for local variables within a block,
and for the data members of classes.

Axway API Gateway 7.6.2

Developer Guide 74

13 Automate tasks with Jython scripts

Java Jython equivalent
Method signature: Method signature:
public int getID(String name) def getID (name)

In Jython, types are not explicitly
declared.

for (Iterator i; i.hasNext();) { for i in list:

i.next ();

The for statement automatically
iterates over Java Lists, Arrays,
Iterators, and Enumerators.

The for statement requires a
sequence. It has the range() and
xrange() functions to make sequences
for the for statement:

for x in range (10, 0, -1):

if (x >= 0) The if statement also hasthe 1 £~
System.out.println(“x is valid for a elif-else statement. Theelseis

factorial”); optional.
else

System.out.println(“x is invalid for a if x >= 0:

factorial”) ; print x, "is valid for a
factorial™
else:

print x, "is invalid for a

factorial"

or

if x ==
doThis ()
elif x ==
doThat ()
elif x ==
doTheOtherThing ()
else:

print x, "is invalid"

while(x < 20) { while x<20:
System.out.print("x : " + x); print x
X++; x = x+1

Jython has an additional e1se clause
that is optional and is executed when
the condition evaluatesto false.

Axway API Gateway 7.6.2 Developer Guide 75

API| Gateway REST APIs

API Gateway exposes some services as REST APIs. These APIs provide access and basic create, read,
update, and delete (CRUD) operations for the service resources. API Gateway contains a Jersey
Servlet (http://jersey.java.net/) that scans a predefined list of packages to identify RESTful

resources to be exposed over HTTP or HTTPS.

Jersey REST services are exposed on the internal management HTTPS listener that is running on
every API Gateway. This HTTPS listener is not accessible to the outside world and only accepts
traffic over two-way SSL from the local Node Manager. Therefore, to call any REST service exposed
on the management interface, you must call it via the Admin Node Manager using the Routing APIL.

The API Gateway REST APIs are available from the following locations:

o INSTALL DIR/apigateway/samples/swagger

« Product APIs page on the Axway Documentation portal

Note When viewing REST APIs on the Axway Documentation portal, the

consumes field is not displayed if you are using formData type
parameters in an API, due to limitations in the Swagger UI version.

API| Gateway component REST APls

The following table summarizes the API Gateway component REST APIs that are available:

API

Description

Router

Management

Deployment

Configuration

The Router REST APl is available in the Node Manager. It acts as a relay that
forwards requests to the appropriate API Gateway registered with the Node
Manager.

The Management REST API is available in the Node Manager and all API
Gateways. It provides the ability to retrieve the following API Gateway
information: API Gateway name, group name, service type, product version,
and the domain ID assigned to the Admin Node Manager on creation. This API
can also be used to update the service name and group name.

The Deployment REST APl is available in the Node Manager. It provides the
ability to manage deployment archives for API Gateways.

The Configuration REST API is available in the API Gateway. It provides the
ability to upload configurations to API Gateway Admin Node Manager instances.
It is used in conjunction with the Deployment API.

Axway API Gateway 7.6.2

Developer Guide 76

http://jersey.java.net/
https://docs.axway.com/category/api

14 API Gateway REST APIs

API Description

APIManager The API Manager REST API is available in the API Manager. It provides the ability
to view and update the configured users, organizations, applications and events
related to the API Manager.

Admin Users The Admin Users REST APl is available in the Node Manager. It provides the
ability to manage administrator users and roles for the API Gateway installation.

Topology The Topology REST APIis available in the Node Manager. It provides the ability
to manage hosts, groups, and services in the topology.

Traffic The Traffic Monitor REST API is available in the API Gateway. It provides the

Monitor ability to monitor traffic in and out of the API Gateway.

Service The Service Manager REST API is available in the Node Manager. It provides the

Manager ability to manage virtualized REST APIs configured in the topology.

Analytics The Analytics REST API is available in API Gateway Analytics. It provides read-
only access to the database audit log and audit message/payload details,
metrics for charting, and CRUD for custom reporting.

RBAC The RBAC (Role Based Access Control) REST API is available in the Node
Manager. It ensures that only users with the assigned role can access parts of
the management services exposed by the Admin Node Manager.

Monitoring The Monitoring REST API is available in the API Gateway. It provides access to
process summary details and listings of the real-time metrics for items that
metrics are recorded for (for example, web services, external APIs,
authenticated clients, external target servers, and so on).

KPS The KPS REST API is exposed by the API Gateway and the Node Manager. The
API Gateway interface provides a persistence mechanism. The Node Manager
service provides administration functions.

Domain Audit The Domain Audit REST API is available in the Node Manager and API Gateway.
It provides the ability to read domain audit events recorded by the Node
Manager and API Gateway.

Embedded The Embedded Active MQ REST API is exposed by the API Gateway.

Active MQ

Import the APl Gateway REST API into API
Manager

You can import the API Gateway REST API Swagger 2.0 definitions into API Manager in the same
way that you import any other APIs. For example:

Axway API Gateway 7.6.2

Developer Guide 77

14 API Gateway REST APIs

1. Click the API Registration > Backend API view in API Manager.

2. Click New API and select Import Swagger API.

3. Inthe Import API dialog, complete the following:

o Source: Select Swagger definition file.

o File or URL: Click the browse button to select the definition file. For example:

o INSTALL DIR/apigateway/samples/swagger/api-gateway-

swagger.json

o API Name: Enter a user-friendly name for the API. The default is api-gateway-

swagger.json.

o Organization: Select the organization from the list (for example, API Development).

4. Click Import to import the API Gateway API.

For more details, see the API Manager User Guide.

API
Frontend API
Backend API
API Catalog

Default Quotas

Add a Jersey-based REST API

Viewing API, api-gateway-swagger.json

~ The following AP! is read-only and cannot be modified.

Cancel

AP AP| Methods Models

Viewing API

DELETE /adminusers/roles/{rolelD}

DELETE /adminusers/users/{userID}
DELETE /deployment/group/configurati...
DELETE /reports/audit/query/{queryid}
DELETE /reports/custom/{reportid}
DELETE /reports/schedule/{reportid}
DELETE /router/service/{instance}/api/...
DELETE /router/service/{instance}/api/...
DELETE /router/service/{instance}/api/...
DELETE /router/service/{instance}/api/...
DELETE /router/service/{instance}/api/...
DELETE /router/service/{servicelD}{res...

DELETE /topology/diskinstance/group/{...

I

*Method name:
Method summary:
*Verb:

*Path:

URL:

*Response type: |

Description:

Parameters

NAME

rolelD

DELETE /adminusers/roles/{rolelD}
Deletes arole.

DELETE ~
/adminusers/roles/{roleID}

http://api/adminusersiroles/{roleID}

Deletes a role.

DESCRIPTION TYPE DATA TYPE

The role to be deleted path | | string

Note The following sections refer to restJabber sample code that is no longerincluded in
the code samples supplied with API Gateway. We recommend that you use this section
only as a general guide for adding a Jersey-based REST API.

The following example shows how to add a Jersey REST service to your API Gateway and configure
a corresponding servlet in Policy Studio. The REST service implements the SMACK API. The example
also demonstrates how invoking a REST request sends an instant message to an account on Google

Talk.

1. Annotate your Java class. The following example shows a code snippet of a Jersey-annotated

Java class for the Smack API. The full class definition can be found in the DEVELOPER _

Axway API Gateway 7.6.2

Developer Guide 78

14 API Gateway REST APIs

SAMPLES/restJabber directory. You must replace the username and password in the
sample code with appropriate values.

@Path ("/jabber")
public class RestJabberRequest {

private static final String username = "yourEmailaddresst@here.com";
private static final String password = "yourPassword";
private static final String resource = "apiServer";

XMPPConnection connection;

// This method is called if TEXT PLAIN is request
@GET
@Produces (MediaType.TEXT PLAIN)
@Path (" {msg}/{to}")
public String sendPlainMessage (@PathParam("msg") String msg,
@PathParam("to") String to) {
try {
sendMessage (msg, to);
} catch (XMPPException e) {
System.err.println ("Sending message failed:");
e.printStackTrace () ;
}
return "Sent a message of : " + msg + " to " + to;

private void sendMessage (String msg, String to) throws XMPPException {
try {
ConnectionConfiguration config =
new ConnectionConfiguration ("talk.google.com", 5222, "gmail.com");
connection = new XMPPConnection (config);
SASLAuthentication.supportSASLMechanism ("PLAIN", O0);
connection.connect () ;
connection.login (username, password, resource);
Chat chat =
connection.getChatManager () .createChat (to, new MessageListener () {
@Override
public void processMessage (Chat arg0, Message argl) {
Trace.debug (argl.getBody ()) ;

)i
chat.sendMessage (msq) ;
connection.disconnect () ;
} catch (org.jivesoftware.smack.XMPPException ex) {
System.out.println ("Exception throw") ;

Axway API Gateway 7.6.2 Developer Guide 79

14 API Gateway REST APIs

Follow the instructions in the README . TXT in the sample directory to build the JAR file for the
restlabber sample.

Add the new JAR and any third-party JAR files used by the restJabber classes (for example, the
SMACK API JAR files) to the CLASSPATH for all API Gateways and Node Managers on a host by
copying them to the INSTALL DIR/apigateway/ext/1lib directory.

Alternatively, you can add the JARs to the CLASSPATH for a single API Gateway instance only,
by copying them to the INSTALL DIR/apigateway/groups/GROUP
ID/ INSTANCE_ID/ext/lib directory.

Restart API Gateway. The REST Jabber service is now available.

Add your servlet application and servlet using Policy Studio or ES Explorer. See Add a servilet
using Policy Studio on page 80.

Test the REST service. See Test the REST Jabber service on page 80.

Add a servlet using Policy Studio

To create a servlet using Policy Studio, perform the following steps:

1.
2.

v W

10.

11.
12,

Start Policy Studio, and connect to the API Gateway.

Select Environment Configuration > Listeners > API Gateway > Default Services >
Paths.

Right-click Paths and select Add Servlet Application.
On the General tab, enter / in the Relative Path field.
Click OK.

Right-click the servlet application path you just created in the Paths window, and select Add
Servlet.

Enter smack in the Name field.
Enter smack in the URI field.
Enterorg.glassfish.jersey.servlet.ServletContainer inthe Class field.
Click Add under the Servlet Properties table to add a new property with the following values:
« Name: jersey.config.server.provider.packages
o Value: com.vordel.jabber.rest
Click OK.
Click Deploy or press F6 to deploy the new configuration on the API Gateway.

Test the REST Jabber service

To test the service, launch a web browser and enter the following URL:

http://localhost:8080/smack/jabber/{msg}/{to _email address}

Axway API Gateway 7.6.2 Developer Guide 80

14 API Gateway REST APIs

Replacemsgand to _email address inthe URL with the message and the email address of the
recipient.

Alternatively, you can execute the REST client that is included with the REST classes in the the
DEVELOPER SAMPLES/restJabber directory. Fill in the details of the message and the
recipient's email address in the client class. You can then build and execute the client using the Ant
targets supplied.

If the service is working correctly, an IM is sent and a string message is returned.

Get the ID of a group or APl Gateway instance

Every group and API Gateway instance in a domain is assigned a unique ID, and this ID is required to
route a REST request to an API Gateway instance. This section describes how to find the ID of a
group and API Gateway instance in a number of ways:

« Use the Print topology option in the managedomain script. See Print the topology using
managedomain on page 81.
« Call the Topology REST API using curl. See Use curl to call the Topology REST APIon page 82.

« Use Jython code to query the Topology APL. See Use Jython to query the Topology APIon page
84.

Print the topology using managedomain

To run the managedomain script, enter the following commands:

> cd INSTALL DIR/apigateway/posix/bin/

> managedomain --menu

Enter the domain user name and password when prompted. The topology management options are
displayed as follows:

Topology Management:
13) Print topology
14
15

6

17

Check topologies are in synch

Check the Admin Node Manager topology against another topology

—

)
)
) Synch all topologies
)

Reset the local topology

Chose option 13, Print topology. Thisresultsin the following output:

Version: 2
Last updated: Wed Jan 30 10:17:20 GMT 2013

Hosts:

Axway API Gateway 7.6.2 Developer Guide 81

14 API Gateway REST APIs

\
--=127.0.0.1 [host-1]
Admin Node Manager:
\
---Node Manager on 127.0.0.1 [nodemanager-1] (https://127.0.0.1:8090)
Groups:
\
-—-QuickStart Group [group-2]

|
--—QuickStart Server [instance-1] (https://127.0.0.1:8085)

All IDs are shown in square brackets beside the node in the topology. In this example, the following
are the names and associated IDs:

Type Display name ID

Group QuickStart Group group-2

API Gateway QuickStart Server instance-1

Use curl to call the Topology REST API

The Admin Node Manager is running the Topology API, and this can be called to return a list of
groups and API Gateways running in the domain.

To call the API, execute the following curl command (replace UNAME : PWD with the domain user
name and password):

curl --insecure --user UNAME:PWD https://127.0.0.1:8090/api/topology

The result is a JSON response with a format similar to the following.

"result": {
"id": "50£d7b96-6e8f-401le-b38c-eb77891e3aeb",
"version": 2,
"timestamp": 1428938393531,
"productVersion": "7.4.1",
"hosts": [
{
"id": "host-1",
"name": "ITEM-A21575.wks.axway.int"

:|I
"groups": [

Axway API Gateway 7.6.2 Developer Guide 82

14 API Gateway REST APIs

"id": "group-1",

"name": "Node Manager Group",
"tags": {},

"services": [

{
"id": "nodemanager-1",

"type": "nodemanager",
"scheme": "https",
"hostID": "host-1",
"managementPort": 8090,
"tags": {

"internal admin nm": "true"
b

"enabled": true

"id": "group-2",

"name": "QuickStart Group",

"tags": {},

"services": [

{

"id": "instance-1",
"name": "QuickStart Server",
"type": "gateway",
"scheme": "https",
"hostID": "host-1",
"managementPort": 8085,
"tags": {},

"enabled": true

1,
"uniqueIdCounters": {
"NodeManager": 2,
"Group": 3,
"Host": 2,
"Gateway": 2
b
"fips": false,
"services": [
{
"id": "nodemanager-1",
"name": "Node Manager on ITEM-A21575.wks
"type": "nodemanager",

"scheme": "https",

"name": "Node Manager on ITEM-A21575.wks.axway.int",

.axway.int",

Axway API Gateway 7.6.2

Developer Guide 83

14 API Gateway REST APIs

"hostID": "host-1",
"managementPort": 8090,
"tags": {

"internal admin nm": "true

}I

"enabled": true

"id": "instance-1",

"name": "QuickStart Server",
"type": "gateway",

"scheme": "https",

"hostID": "host-1",
"managementPort": 8085,
"tags": {},

"enabled": true

All IDs are found in strings named id and are highlighted above.
Note The Admin Node Manager is itself within a group with the ID group-1.

In this example, the following are the names and associated IDs:

Type Display name ID

Group QuickStart Group group-2

API Gateway QuickStart Server instance-1

Use Jython to query the Topology API

You can call the Topology API from Jython scripts. The sample Jython script INSTALL
DIR/apigateway/samples/scripts/topology/outputIDs.py usesthe Topology
API to output the name and ID of the group and API Gateway instance.

> cd INSTALL DIR/apigateway/samples/scripts
> ./run.sh topology/outputIDs.py
API Server 'QuickStart Server' has id 'instance-1' belongs to Group 'QuickStart

Group' with id 'group-2', it is running on ..

Axway API Gateway 7.6.2 Developer Guide 84

Appendix A: Declarative Ul
reference

This appendix provides in-depth details about declarative XML, which is used in API Gateway to
define the user interface of filters and dialogs within Policy Studio.

Declarative XML overview

Declarative XML is a user interface markup language defining UI elements and bindings that allows
you to quickly create dialogs within Policy Studio with minimal coding.

The defined elements map to Eclipse Standard Widget Toolkit (SWT) widgets and Axway
ScreenAttributes (groups of SWT widgets backed by entity instances).

This topic describes in detail the UI elements and bindings.

Element quick reference

The following table contains the available elements (in alphabetical order):

Element name Example

ActorAttribute Ackor: | Current ackorrole anly j

AgeAttribute

AuthNRepositoryAttribute

binding
BitMaskAttribute [haski [Mask2 [~ Mask3
Button - =
[One)
ButtonAttribute [~ Check

Axway API Gateway 7.6.2 Developer Guide 85

Appendix A: Declarative UI reference

Element name Example

CategoryAttribute

CertDNameAttribute

certSelector

CertTreeAttribute

CheckboxGroupAttribute

CircuitChainTable

ComboAttribute Cey P =

ComboBinding

ComboStackPanel Label I'-.l'alue LI
Stack Child: |

condition

ContentEncodingAttribute

CronAttribute

DirectoryChooser Directary: | Choose...

ESPKReferenceSummaryAttribute

FieldTable Fislds |

add | e | Delets |

File:: | ._t;he-:_gse. o |

FileChooserText

Axway API Gateway 7.6.2 Developer Guide 86

Appendix A: Declarative UI reference

Element name Example
rou GraLp

HTTPStatusTableAttribute

include

@ MName:

LifeTimeAttribute

days I j hirs I ﬁ mins I ﬁ LS

MsgAttrAttribute Attribute: j

a
attribuke lookup. lisk —
atkribute, subject. format

atkribute, subject.id
authentication. cert x

MultiValueTextAttribute

NameAttribute Mame: | Filter

NumberAttribute Mumber: |1|:||:||:||:|
panel
PasswordAttribute Passwaord: |******
RadioGroupAttribute % Radial

" Radio?

ReferenceSelector
- Reference: I i

SamlAttribute

SamlSubjectConfirmationAttribute

Axway API Gateway 7.6.2 Developer Guide 87

Appendix A: Declarative UI reference

Element name Example
scrollpanel ‘DL

Button
Button

section * Retries

 Failure Settings

[Check
SigningKeyAttribute
SizeAttribute
SoftRefListAttribute
SoftRefTreeAttribute
SpinAttribute Spin IE
tab
— b |
tabFolder

Tak 1 I Tak 2 Tak 3
TablePage Figld1 | Field2 |
add| Edt | Delete |

text

Axway API Gateway 7.6.2 Developer Guide 88

Appendix A: Declarative UI reference

Element name Example
TextAttribute - I |
ui

validator

XPathAttribute

The following sections detail the elements, including the available attributes.

Note In thelisting of available attributes for each element, the attributes are identified as
mandatory (M), optional (O), or conditional (C).

Elements Ato C

ActorAttribute

Description

The <ActorAttribute> tag renders an SWT Combo widget with an optional Label. The combo box is
populated with the following entry: “Current Actor/Role only”. This is the default value for SOAP
requests that contain a WS-Security block, and do not contain a SOAP Actor/Role attribute. An
additional value can be entered if a WS_Security block with a specific Actor/Role is contained in the
SOAP message.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

label Specifies the ID of the resource containing the text to display 0] -
on the Label.

Axway API Gateway 7.6.2 Developer Guide 89

Appendix A: Declarative UI reference

Attribute Description M/O Default

span Value used in the creation of layout-data for the Button. 0] 1
Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required 0] false

Sample XML

<ui>
<panel indent="15" margin="0">
<ActorAttribute label="ACTOR LABEL" field="actor" required="true" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Ackar: ICurrent actorfrole only = |

AgeAttribute

Description

The <AgeAttribute> tag renders an SWT Label (optional), Text and Combo widgets, allowing you to
specify a numeric age value, and select one of the following age types:

« Seconds
« Minutes
« Hours
« Days

Note Thevalue thatis persisted to the underlying entity is stored as milliseconds.

Axway API Gateway 7.6.2 Developer Guide 90

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

label Specifies the ID of the resource containing the text to display 0] -
on the Label.
span Value used in the creation of layout-data for the Button. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridDatal() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required 0] false

Sample XML

<ui>
<panel columns="3" margin="0">
<AgeAttribute field="maxAge" label="AGE LABEL" required="true"/>
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Purge data older thani I 1 |Da':.fs j

AuthNRepositoryAttribute

Description
The <AuthNRepositoryAttribute> tag renders an SWT Combo widget with an optional Label.

Authentication repositories are grouped into different types and each type of authentication
repository has an associated group of filter types they are compatible with. For example, “Local
Repositories” instances are compatible with the following filter types:

Axway API Gateway 7.6.2 Developer Guide 91

Appendix A: Declarative UI reference

« HttpBasicFilter

« HttpDigestFilter

« WsBasicFilter

« WsDigestFilter

« WsUsernameFilter

« AttributeAuthnFilter

« FormAuthnFilter

The Combo widget is then populated with this list of instances that are compatible with this filter

type.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

label Specifies the ID of the resource containing the text to display 0] -
on the Label.

filterType When displaying the combo widget, only lists the M -
authentication repositories which are compatible with this
specific filter type.

refName Specifies Field value of the referenced entity that will be M -
displayed in the Combo box.

required Specifies whether or not the entity field is required M -

Sample XML

<ui>

</ui>

</panel>

<panel columns="2">
<AuthNRepositoryAttribute label="REPOSITORY LABEL" field="repository"

filterType="FormAuthnFilter" refName="name" required="true"/>

Rendered Ul

The above XML renders the following UI:

Axway API Gateway 7.6.2

Developer Guide 92

Appendix A: Declarative UI reference

Repositary : IL::u:aI Idser Skare j

binding

Description

The <binding> tag allows you to create a binding between various widgets.

Available attributes
Attribute Description M/O Default
driver Specifies the name of the attributes that designate as M -

drivers separated by commas.

driven Specifies a list of attributes separated by commas to be M -
enabled/disabled.
class Specifies the name of the class that performs and M -

controls the binding between attributes.

uncheckOverride This attribute only applies when using the Enabler class. 0] -
It allows the Enabler to enable controls when a
ButtonAttribute is not selected and disable them when a
ButtonAttribute is selected. Specify ‘enabled’ to override
the default Binding behavior.

Sample XML

The binding below specifies a binding between a <ButtonAttribute> and two <ComboAttribute>
attributes. The binding is controlled in the Enabler class.

<ui>
<ButtonAttribute field="sortFiles" label="SORT FILES_ LABEL"/>
<panel columns="2" margin="0">

<panel label="SORT TYPE LABEL" margin="0,0,0,7">

<ComboAttribute field="sortType"
contentSource="com.vordel.client.manager.filter.dirscan.DirectoryScannerDialog.sortT
ype"

includeBlank="false" readOnly="true" required="true" stretch="true" />
</panel>
<panel label="SORT DIRECTION LABEL" margin="0,0,0,7">

Axway API Gateway 7.6.2 Developer Guide 93

Appendix A: Declarative UI reference

<ComboAttribute field="sortDirection"
contentSource="com.vordel.client.manager.filter.dirscan.DirectoryScannerDialog.sortD
irection"
includeBlank="false" readOnly="true" required="true" stretch="true" />
</panel>
<binding driver:"SORT_FILES_LABEL" driven:"SORT_TYPE_LABEL, SORT_DIRECTION LABEL"
class="com.vordel.client.ui.declarative.Enabler" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

When the Sort files button is disabled the “Sort type” and “Sort direction” Combo boxes are
disabled.

[] 5otk files

When the Sort files button is enabled they are enabled also.

Sork Files Marme W fscending w

BitMaskAttribute

Description

The <BitMaskAttribute> tag renders a bank of SWT Button widgets, each with the SWT . CHECK
style applied, and backed by the specified entity field.

Available attributes
Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the M -

rendered controls.

Axway API Gateway 7.6.2 Developer Guide 94

Appendix A: Declarative UI reference

Attribute Description M/O Default

columns Value used in the creation of the layout data for the Composite. O 1

Columns represents the number of cell columns of the
following GridLayout:

GridLayout gridLayout = new GridLayout () ;

gridLayout.numColumns = columns;

required Specifies whether or not the field is required 0] false

Each item in the bitmask is represented declaratively as a <choice> tag, which is a child of
<BitMaskAttrbute>. The following table outlines the <choice> attributes:

Attribute Description M/O Default
label Label to be displayed for the check box M -
value Integer value for this choice in the overall bitmask M -

Sample XML

<ui>

<panel indent="15" margin="0">
<BitMaskAttribute field="logMask" columns="3">
<choice value="1" label="LOG PAGE_LOG LEVEL FATAL"/>
<choice value="2" label="LOG PAGE LOG LEVEL FAILURE"/>
<choice value="4" label="L0G PAGE LOG LEVEL_ SUCCESS"/>
</BitMaskAttribute>

</panel>

</ui>

Rendered Ul

The above XML renders the following UI:

[~ Fatal W™ Faillure [Success

button

Description

The <button> tag renders an SWT Button widget with the SWT . PUSH style applied.

Axway API Gateway 7.6.2 Developer Guide 95

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

label Used internally for callback purposes to allow the extentsof the M -
scroll panel to be set correctly.

If an image is not specified, the label is also used as the text of
the button.

image Specifies the ID of the image to be used for the button. TheID O -
must be specified in the images.propertiesfile.

An image takes precedence over a label, so if both are specified
the image will be displayed, rather than the text.

tooltip Specifies the tooltip text. 0] -

style Specifies the style of the button. 0] push
Possible values are:

« check - renders a check box
« radio - renders a radio button

« push - renders a push button

selected If the style attribute is specified and the value is set to “check” C true
or “radio”, it specifies whether or not the button is selected.

Possible values are “true” and “false”.

Sample XML

<ui>
<panel columns="2">
<button image="browse" label="BROWSE TIP" tooltip="BROWSE TIP" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

&)

Axway API Gateway 7.6.2 Developer Guide 96

Appendix A: Declarative UI reference

ButtonAttribute

Description

The <ButtonAttribute> tag renders an SWT Button widget with the SWT . PUSH style applied, and
backed by the specified entity field.

Available attributes

Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the M -
rendered controls.
label Specifies a textual label for the Button. M -
displayName Specifies the name of the Button to be displayed in the 0] -
event of an error.
span Value used in the creation of layout data for the Button. 0] 1
Span represents the horizontal span of the following
GridData:
GridData gridData = new GridDatal() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;
on Specifies the attribute value when the Button is checked. 0] -
off Specifies the attribute value when the Button is unchecked. 0] -
required Specifies whether or not the field is required. 0] false
trackChanges Specifies whether or not changes will be tracked when the 0] false

button state has changed. If set to “true” this calls the
trackChange () method on the page on which the
button is rendered.

Sample XML

<ui>

<group label="LOG PAGE ABORT SECTION LABEL">
<ButtonAttribute field="abort" label="ABORT PROCESSING LABEL" span="2"/>

Axway API Gateway 7.6.2

Developer Guide 97

Appendix A: Declarative UI reference

</group>
</ui>

Rendered Ul

The above XML renders the following UI:

Audit Logging Behawviour
’]_ Abort circuit processing on database log error

CategoryAttribute

Description

The <CategoryAttribute> tag renders an SWT Combo widget with either the SWT . BORER or
READ ONLY style applied. It lists all the categories available.

Available attributes

Attribute Description M/O Default
label Specifies a textual label for the Combo. 0 -
readonly Specifies the style of the Combo. It can be either 0] SWT .READ _
SWT.READ_ONLY or SWT . BORDER. ONLY
Sample XML
<ui>
<CategoryAttribute label="LOG_CATEGORY LABEL"/>
</ui>

Axway API Gateway 7.6.2 Developer Guide 98

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

iZategory: | Miscellaneous w

aktribuke

Authentication
Autharization
Content Filkering
Miscelaneous

CertDNameAttribute

Description
The <CertDNameAttribute> tag renders a SWT Combo with a list of certificates.

Available attributes
Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the 0] -

rendered controls.

label Specifies the ID of the resource containing the text to display 0] -
on the Label (to the left of the combo box)

required Specifies whether or not the entity field is required 0] false
Sample XML
<ui>

<CertDNameAttribute label="ISSUER DNAME LABEL"
field="issuerName" required="true" />

</ui>

Rendered Ul

The above XML renders the following UI:

Axway API Gateway 7.6.2 Developer Guide 99

Appendix A: Declarative UI reference

Izzuer Mame:

Note Thecombo box islongerin width but shortened here for clarity.

certSelector

Description

The <certSelector> tag renders a Label with an associated Button and read-only TextBox (which
contains the alias of the selected certificate or (unset) if no certificate has been selected).

When the Button is clicked a certificate selection dialog similar to the following is displayed:

@ Choose a specific Certificate

Certificates
type filter text

Alias

[|E AC Camerfirma SA.

Certificate Name Expiry

mf »

DD. CN=Chambers of Commerce Roi CN=Chambers of Commerce Root - 2008,... Sat Jul 31 13...
DQ CN=Global Chambersign Root - CN=Global Chambersign Root - 2008,0=A.. SatJul 31 13..

[| AC Camerfirma SA CIF A82743287 o
Bind the Certificate at runtime
$lenv.}
Available attributes
Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the M -
rendered controls.
label Specifies a textual label to appear above the table. 0] -
buttonOnRight Specifies whether or not the button is rendered to theright O false
of the widgets.

Axway API Gateway 7.6.2

Developer Guide 100

Appendix A: Declarative UI reference

Attribute Description M/O Default

view If “privateKey" is specified for this attribute the selection 0] -
dialog that is displayed when the associated button is
clicked will only display certificates that contain a private
key.

required Specifies whether or not the entity field is required. 0] false

Sample XML

<ui>
<panel>
<certSelector label="SECURITY_ SERVER CERTIFICATE" field="sslCertificate"
required="false" view="privateKey" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UTI:

Server Certificate

| (unset)

CertTreeAttribute

Description

The <CertTreeAttribute> tag renders a JFace TreeViewer, populated with certificate information read
from the certificate store.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

Axway API Gateway 7.6.2 Developer Guide 101

Appendix A: Declarative UI reference

Attribute Description M/O Default
label Specifies a textual label to appear above the table. 0] -
multiSelect Specifies whether or not multiple certificates can be selected 0] true

in the tree.
keysOnly Specifies whether or not to filter the tree and only show 0] false

certificates that contain a private key. By default all certificates
are displayed.

tableHeight Specifies a height hint for the table. 0 -

required Specifies whether or not the entity field is required. 0] false

Sample XML

<ui>
<panel>
<CertTreeAttribute label="SSL CERTIFICATES LABEL" field="sslUsers"
required="false" multiSelect="false" keysOnly="true" tableHeight="300" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Choose the trusted certificates

|t~;.-'|:ue filker temxt

Alias | Certificate Manme | Expiry: | -

= Dﬁ AC Camerfirma 5.4,

L DD CN=_Charmbers of Commer CM=Charnbers of Co... Sat Jul 31 13:29..,

P b DG CN=Global Chambersign B CM=Global Chamber,,. Sat Jul 31 13:31..,

EI Dﬁ AC Camerfirma 5o CIF AS274!

P b DG CM=_Chambers of Commer CM=Chambers of Co... Wed Sep 30 17:...

EI DIE] AddTrust AB

i G CM=AddTrust Class 1 CA F CM=~AddTrust Class ... Sat May 30 11:3...
------ DD CM=AddTrust External CA CM=AddTrust Exter... 5Sat May 30 11:4...

P e DD CM=AddTrust Qualified Zf CN=AddTrust Qualifi... Sat May 30 11:4..,

= DE] Ametica Online Inc.

e DD CM=America Online Root { CM=Ametica Online ... Thu Mow 19 20:4,.,
------ DG CN=Armetica Online Root { CM=America Online ... | Tue Sep 29 15:0.., ll

Axway API Gateway 7.6.2 Developer Guide 102

Appendix A: Declarative UI reference

CheckboxGroupAttribute

Description

The <CheckboxGroupAttribute> tag renders an SWT Composite with zero or more Buttons (style =
SWT . CHECK) defined using <choice> tags as children.

CheckboxGroupAttribute attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

columns Value used in the creation of layout data for the Composite. 0] 1
Columns represents the number of cell columns in the layout:

GridLayout layout = new GridLayout () ;

layout.numColumns = columns;

required Specifies whether or not the entity field is required. 0] false

choice attributes

Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display M -

on the Label.
value Specifies one of the possible entity values for the ‘field’ defined M -

in the CheckboxGroupAttribute tag. This value is tied to the
button, and saved to the Entity if this button is selected.

span Value used in the creation of layout data for the Button. 0] 1
Span represents the horizontal span of the following GridData:
GridData gridData = new GridData () ;
gridData.horizontalAlignment = GridData.FILL;

gridData.grabExcessHorizontalSpace = true;

gridbData.horizontalSpan = span;

Axway API Gateway 7.6.2 Developer Guide 103

Appendix A: Declarative UI reference

Sample XML

The following example represents the multi-valued “options” entity field, of which there are three
possible values: “valuel”, “value2”, and “custom”.

« If the first check box button is selected (represented by the first <choice> tag) the “options”

acquire the value “valuel”.

« If the second check box button is selected the “options” acquire the two values: “valuel” and

“value2”.

« If all three check boxes are selected the “options” acquire all three values: “valuel”, “value2”

and “custom”.

The <CheckboxGroupAttribute> tag is not restricted to having only <choice> tags as children. A
good candidate is the <panel> container tag, as outlined in the example below. When the *User
Defined’ choice is selected the children of the subsequent panel are enabled automatically. When

the'User Defined’ choice is unselected, these children are disabled automatically.

<ui>

<panel>

<choice value="valuel"
<choice value="value2"
<choice value="custom"
<panel indent="15"
<TextAttribute
</panel>
</CheckboxGroupAttribute>
</panel>
</ui>

<CheckboxGroupAttribute field="options" label="Select Values">

label="Valuel" />
label="Value2" />

label="User Defined" />
margin="0">

field="custom" label="Value"/>

Rendered Ul

The above XML renders the following UL

The multi-valued “options” entity field has two values: “valuel” and “value2”:

V| Valuel
V| Value?
User Defined

The multi-valued “options” entity field has two values: “value2” and “custom”:

Axway API Gateway 7.6.2

Developer Guide 104

Appendix A: Declarative UI reference

[]valuel
Value2
User Defined
Value
value3 @

CircuitChainTable
Description
The <CircuitChainTable> tag renders a Table widget. The table is populated with the field values of
the backed entity.
Available attributes

Attribute Description M/O Default

flavor Specifies the type of entity that is backed by each Table M -

entry in the rendered controls.
setOrderable Specifies whether the table has up and down buttons to 0] true

traverse the entries.

setCapabilities Specifies the CRUD capabilities that are allowed. They are 0] -
separated by a comma [ADD, EDIT, DELETE]

Sample XML

<ui>
<CircuitChainTable flavor="OperationCircuitReference"
setOrderable="false" setCapabilities="EDIT"/>

</ui>

Axway API Gateway 7.6.2 Developer Guide 105

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Marne Marnespace SOAP Action SOAR Version Palicy ko Execuke

ComboAttribute

Description
The <ComboAttribute> tag renders an SWT Combo widget, backed by the specified entity field.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

contentSource Specifies a string array (Java String[]) or map (Java M -
Map<>) with which to populate the combo box.

label Specifies a textual label to appear to the left of the Combo 0] -

includeBlank Specifies whether or not a blank item should be added as 0] false
the first item to the combo box

Axway API Gateway 7.6.2 Developer Guide 106

Appendix A: Declarative UI reference

Attribute Description M/O Default

readOnly Specifies whether or not the combo box is read-only; that 0] false
is, whether or not the user can enter their own value as well
as select from the drop-down list.

required Specifies whether or not the entity field is required 0] false

stretch Specifies whether or not the combo box stretches to fillthe O false
available horizontal space

Sample XML

<ui>
<group label="TRACE SETTINGS LABEL" columns="2" span="2">
<ComboAttribute field="traceLevel" label="TRACE LEVEL LABEL"
required="true" readOnly="true"
contentSource="com.vordel.client.manager.filter.util.TraceHelper.logLevels" />
</group>
</ui>

Rendered Ul

The above XML renders the following UI:

Trace Setkings
’7Trace lewel: |DEBLIG j

comboBinding

Description

The <comboBinding> tag allows you to create a binding between various widgets.

Available attributes

Attribute Description M/O Default
driver Specifies the name of the ComboAttribute that designatesas M -
the driver.

Axway API Gateway 7.6.2 Developer Guide 107

Appendix A: Declarative UI reference

Attribute Description M/O Default

driven Specifies a list of Attributes separated by *,” to beenabledor ™M -
disabled.

class Specifies the name of the class that will perform and control M -

the binding between attributes.
valueSelected Designates the value to be initially selected. M null

enableDriven Specifies by default where the attributes will be enabled or 0] true
disabled on startup.

Sample XML

The binding below specifies a binding between a ComboAttribute and a TextAttribute.

<ui>
<ComboAttribute field="extractMethod"
label="JMS CONSUMER EXTRACTION METHOD LABEL"

contentSource="com.vordel.client.manager.filter.jms.JMSConsumerDialog.extractMethod
s"
includeBlank="false" readOnly="true"
required="true" stretch="true"/>
<TextAttribute field="attributeName"
label="JMS MESSAGE ATTRIBUTE NAME"
required="false"/>
<comboBinding driver="JMS CONSUMER EXTRACTION METHOD LABEL"
driven="JMS MESSAGE ATTRIBUTE NAME"
class="com.vordel.client.ui.declarative.ComboEnabler"

valueSelected="1" enableDriven="false"/>

</ui>

Rendered Ul

The above XML renders the following UI:

Extraction Method: | Create a conkent,body atbribute based on the SOAP Cwver IMS draft specification

Axway API Gateway 7.6.2 Developer Guide 108

Appendix A: Declarative UI reference

ComboStackPanel

Description

The <ComboStackPanel> tag primarily renders an SWT Combo widget, backed by the specified
entity field. If the tag contains <panel> children it also renders those controls as part of an SWT
StackLayout control, with each panel being ‘flipped’ when the selection in the combo box changes.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered combo box.

label Specifies a textual label to appear to the left of the Combo 0] -

required Specifies whether or not the entity field is required 0] false

span Value used in the creation of layout-data for the Combo. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridData() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridbData.horizontalSpan = span;

Sample

XML

<ui>

<panel columns="2">
<NameAttribute />
<ComboStackPanel field="connectionType" label="FTP UPLOAD CONNECTION TYPE LABEL">
<panel label="FTP" columns="2">
<TextAttribute label="FTP UPLOAD SSL PROTOCOL LABEL" field="sslProtocol"/>
</panel>

<panel label="FTPS" columns="2">
<TextAttribute label="FTP UPLOAD SSL PROTOCOL LABEL" field="sslProtocol"/>
<ButtonAttribute label="FTP UPLOAD SSL IS IMPLICIT" field="isImplicit" />
<tabFolder span="2">
<tab label="FTP UPLOAD SSL TRUSTED CERTS TAB">
<panel>
<CertTreeAttribute label="FTP UPLOAD SSL TRUSTED CERTS LABEL"

Axway API Gateway 7.6.2

Developer Guide 109

Appendix A: Declarative UI reference

field="trustedCerts" required="false"
tableHeight="100" />
</panel>
</tab>
<tab label="FTP _UPLOAD SSL CLIENT CERTS TAB">
<panel>
<CertTreeAttribute label="FTP_UPLOAD SSL CLIENT_ CERTS LABEL"
field="clientCert" required="false"
multiSelect="false" keysOnly="true"
tableHeight="100" />
</panel>
</tab>
</tabFolder>
</panel>
</ComboStackPanel>
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Note Thered rectangles are for illustrative purposes, and show the controls rendered by the
ComboStackPanel and its children.

Marme: | FTP Upload

Connection Type | AR -

551 Protocal | 551

Mame: | FTP Upload
Cornection Type 7

S50 Protocol | 550
V' 1s Implicit

Trusted Certificates | Client Certificates

Choose the trusted certificates

It';.fpe filer text

filias | Certificate Mame | Expity |;I
EDE & Camerfirma 5.4, [
Da CM=0lobal Chambersign Roat - 2000 CH=Global Chambersign R, 5ak Jul 31 13:31...
Da M=Chambers of Comrnetce Rook - | CH=Chambers of Commerc,.. 5ak Jul 31 13:29,.,
D AC Carnerfirma 54 CIF ABZ743287

= DG CM=Chambers of Commerce ook, ¢ CH=Chambers of Commerc... ‘Wed Sep 30 17:...

=TI AddTrust 48

Axway API Gateway 7.6.2 Developer Guide 110

Appendix A: Declarative UI reference

Condition

Description

The <Condition> tag introduces control statements.

Available attributes

Attribute Description M/O Default

criteria Specifies the control statement. Currently “if” and “ifnot” are M -
supported.

property Specifies a property value to be evaluated. M -

type Specifies the type of Condition. Currently only "JRE” is 0] JRE
supported.

value Specifies the value of the property. If not specified an attempt 0] -

is made to get the value of the property.

Sample XML

<ui>
<Condition criteria="ifnot" property="httphostheader.disabled">
<group label="HOST HEADER GROUP NAME" columns="2" fill="false">
<RadioGroupAttribute field="forwardClientHostHeader" columns="2">
<choice value="1" label="HOST HEADER FROM CLIENT"/>
<choice value="0" label="HOST HEADER FROM VORDEL" />
</RadioGroupAttribute>
</group>
</Condition> />
</ui>

Rendered Ul

If the “httphostheader” property is not enabled nothing is displayed. If the “httphostheader”
property is enabled it renders the following UI:

HTTP Host Header

(") Use Host header specified by dient (%) Generate new Host header

Axway API Gateway 7.6.2 Developer Guide 111

Appendix A: Declarative UI reference

CronAttribute

Description

The <CronAttribute> tag renders an SWT Button widget and a SWT Text widget, backed by the
specified entity field.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

label Specifies a textual label to appear to the left of the Combo. 0] -

required Specifies whether or not the entity field is required. M false

Sample XML

<ui>
<CronAttribute field="expression"
label="CRON_EXPRESSION DIALOG EXPRESSION LABEL"
required="true"/>

</ui>

Rendered Ul

The above XML renders the following UI:
Cron expression: B

ContentEncodingAttribute

Description

The <ContentEncodingAttribute> tag renders an SWT Text widget and a SWT Button widget,
backed by the specified entity field.

Axway API Gateway 7.6.2 Developer Guide 112

Appendix A: Declarative UI reference

Available attributes

Attribute

Description

M/O Default

field

label

trackChanges

span

required

Specifies the name of the field of the entity backed by the
rendered controls.

Specifies the ID of the resource containing the text to
display on the Label (to the left of the Text box)

Specifies whether or not changes will be tracked when the
button state has changed. If set to “true” this will call the
trackChange() method on the page on which the button is
rendered

Value used in the creation of layout data for the Button..
Span represents the horizontal span of the following
GridData:
GridData gridData = new GridData();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

Specifies whether or not the entity field is required

0] false

0] false

Sample XML

<ui>

</ui>

<ContentEncodingAttribute field="inputEncodings"

label="inputEncodings" trackChanges="true"/>

Rendered Ul

The above XML renders the following UI:

Input Encodings

Axway API Gateway 7.6.2

Default

Developer Guide 113

Appendix A: Declarative UI reference

Elements D to M

DirectoryChooser

Description

The <DirectoryChooser> tag renders an SWT Label, Text and Button widget. When clicked, the
button displays a directory browser to allow you to easily select a directory.

Available attributes
Attribute Description M/O Default
label Text for the label to be displayed M -
field Specifies the name of the field of the entity backed by the M -

rendered controls.

span Value used in the creation of layout data for the Composite. 0] 1
Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required 0] false

Sample XML

<ui>
<group label="LOCATION LABEL" span="2">
<panel columns="2">
<TextAttribute field="fileName" label="FILENAME LABEL" required="true" />
<DirectoryChooser field="directory" label="DIRECTORY LABEL" required="true"
span="2" />
</panel>
</group>
</ui>

Axway API Gateway 7.6.2 Developer Guide 114

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Location:

File name: |

Direckory: I Choose, .. |

ESPKReferenceSummaryAttribute

Description

The <ESPKReferenceSummaryAttribute> tag renders an SWT Text and Button control. When
clicked, the button displays a reference browser to allow you to easily select the required entity

reference.
Available attributes
Attribute Description M/O Default
label Specifies the ID of the resource containing the text to 0] -
display on the Label.
field Specifies the name of the field of the entity backed by the M -
rendered controls.
required Specifies whether or not the entity field is required. 0] false
dialogTitle Specifies the ID of the resource containing the text to 0] -
display on the title bar of the reference browser dialog.
displayName Specifies the ID of the resource containing the 0] -
attribute/control name to be displayed in the event of an
error.
selectableTypes Specifies the entity types (as a comma separated list) that M -
are selectable in the TreeViewer displayed in the Reference
Selector dialog.
searches Specifies the entity types (as a comma separated list) that M -

are searchable for entities of those types specified by the
“selectableTypes” attribute.

Axway API Gateway 7.6.2

Developer Guide 115

Appendix A: Declarative UI reference

Sample XML

<ui>
<ESPKReferenceSummaryAttribute
displayName="EMS CONSUMER SELECT CONNECTION DISP NAME"
field="emsClient"
searches="EMSClientGroup" selectableType="EMSClient"
dialogTitle="EMS CLIENT DIALOG TITLE" required="true" span="2" />

</ui>

Rendered Ul

The above XML renders the following UI:

The following dialog is displayed when you click the browse button:

= |:| TIBCD Enterprise Messaging Service connections
148 TIBCO EMS

FieldTable

Description

The <FieldTable> tag renders an SWT TableViewer, along with a bank of buttons to allow you to
enter a list of values, the type of which is based on the specified entity field.

Available attributes

Attribute Description M/O Default

label Text for the label to be displayed. M -

Axway API Gateway 7.6.2 Developer Guide 116

Appendix A: Declarative UI reference

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

helpID Help identifier used for the Add/Edit dialogs associated M -
with the table.
span Value used in the creation of layout data for the controls. 0] 2

Span represents the horizontal span of the following
GridData:

GridData gridData = new GridData() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;
required Specifies whether or not the entity field is required. 0] false
columnWidth Specifies the width of the column in the table. 0] 200

addDialogTitle Specifies the title of the dialog that appears when the'Add” O ‘Add’
button is clicked.

editDialogTitle Specifies the title of the dialog that appears when the‘'Edit” O ‘Edit’
button is clicked.

labelText Specifies the text that appears on the label on the Add and 0] ‘Value’
Edit dialogs.

Sample XML

<ui>
<panel columns="2">
<TextAttribute field="cmdLine" label="CMD LINE LABEL" required="true" />
<FieldTable field="arguments" label="ARGUMENTS LABEL" />
</panel>
</ui>

Axway API Gateway 7.6.2 Developer Guide 117

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Command ko execute; I

Arguments: |

add| Edit| Defete |

FileChooserText

Description

The <FileChooserText> tag renders an SWT Label, Text and Button widget. When clicked, the
button displays a file browser to allow a user to easily select a file.

Available attributes

Attribute Description M/O Default
label Text for the label to be displayed M -
field Specifies the name of the field of the entity backed by the M -

rendered controls.

span Value used in the creation of layout data for the Composite. 0] 1
Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required 0] false

Axway API Gateway 7.6.2 Developer Guide 118

Appendix A: Declarative UI reference

Sample XML

<ui>
<panel columns="2">
<FileChooserText field="fileIn" label="FILE LABEL" required="true" span="2" />
</panel>

</ui>

Rendered Ul

The above XML renders the following UI:

File: | Choose. ., |

group

Description

The <group> tag renders an SWT Group widget, which is usually used to group other widgets.

Available attributes

Attribute Description M/O Default

label Used to give the group a visual name and also employed 0] -
internally for binding purposes to allow the control and its
children to be enabled/disabled.

columns Value used in the creation of the layout data for the 0] 1
Composite.
Columns represent the number of cell columns of the
following GridLayout:

GridLayout gridLayout = new GridLayout () ;

gridLayout.numColumns = columns;

Axway API Gateway 7.6.2 Developer Guide 119

Appendix A: Declarative UI reference

Attribute

Description

span

margin

fill

Value used in the creation of layout data for the 0] 1
Composite.

Span represents the horizontal span of the following
GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

Value used in the creation of the layout data for the 0] 5
Composite.

Margin specifies the number of pixels to be used for the
Composite. It can be specified as a single integer value
whereby the following layout members will be set:

GridLayout gridLayout = new GridLayout () ;
gridLayout.marginHeight = margin;
gridLayout.marginWidth = margin;
gridLayout.marginTop = margin;
gridLayout.marginBottom = margin;
gridLayout.marginlLeft = margin;

gridLayout.marginRight = margin;

Margin can also be specified as a list of 4 integer values,
whereby the following layout members will be set:

GridLayout gridLayout = new GridLayout () ;
StringTokenizer st =

new StringTokenizer (margin, “,”);
gridLayout.marginTop = st.nextToken() ;
gridLayout.marginBottom = st.nextToken () ;
gridLayout.marginLeft = st.nextToken();
gridLayout.marginRight = st.nextToken() ;

Value used in the creation of the layout data for the 0] true
Composite.

Fill specifies that the layout should resize the Composite to
fill both horizontally and vertically, and, depending on its
parent, should grow horizontally and vertically if the space
is available. Fill is usually used in conjunction with “span”.
Fill represents the following GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.verticalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalSpan = span;

Axway API Gateway 7.6.2

Developer Guide 120

M/O Default

Appendix A: Declarative UI reference

Attribute Description M/O Default
verticalSpacing Value used in the creation of the layout data for the 0] 5
Composite.

Specifies the number of pixels from the bottom edge of
one cell and the top edge of its neighboring cell
underneath:

GridLayout gridLayout = new GridLayout () ;
gridLayout.verticalSpacing = verticalSpacing;

indent Value used in the creation of the layout data for the 0] 0
Composite.
Specifies the number of pixels of horizontal margin that
will be placed along the left and right edges of the layout.
The following layout member will be set:

GridLayout gridLayout = new GridLayout();
gridLayout.marginWidth = indent;

Sample XML

<ui>

<group label="LOG PAGE CATEGORY LABEL" columns="2">
<CategoryAttribute label="LOG CATEGORY LABEL" required="true" />
</group>

</ui>

Rendered Ul

The above XML renders the following UI:

Filker Categaory

Category: |Miscellaneous LI

HTTPStatusTableAttribute

Description

The <HTTPStatusTableAttribute> tag renders a Table and a group SWT Buttons that appear as a
Button bar. When clicked, the buttons display a dialog to add, edit, or delete a HTTP status code.

Axway API Gateway 7.6.2 Developer Guide 121

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

tableHeight Specifies the preferred height of the control 0] -

required Specifies whether or not the entity field is required 0 false

Sample XML

<ui>
<HTTPStatusTableAttribute field="retryHTTPRanges" tableHeight="100" />

</ui>

Rendered Ul

The above XML renders the following UTI:

HTTP Skatus

[] Forbidden {403}
[] server Error (S00-599)

| add | | edit | [Delete |

include

Description

The <include> tag allows another declarative XML file to be included inline in the parent including
XML file.

Axway API Gateway 7.6.2 Developer Guide 122

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

resource The name of the declarative XML file to be included inlineinthe M
declarative parent XML file.

class The class, including package, used to render the included 0]
resource. Any required string resources will need to be
redefined in the local resource.properties file.

Sample XML

<ui>
<panel columns="2">
<include resource="AuditSettings-page.xml"
class="com.vordel.client.manager.AuditSettingsPage"/>
</panel>
</ui>

label

Description
The <label> tag renders an SWT Label widget.

Available attributes

Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display M -

on the Label.
span Value used in the creation of layout data for the Label.. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

bold Value used to specify whether or not the font is rendered bold. 0] false

Axway API Gateway 7.6.2 Developer Guide 123

Appendix A: Declarative UI reference

Sample XML

<ui>

</ui>

<panel columns="2">
<NameAttribute />
<label label="FILE TO LOAD SUMMARY" span="2" />

</panel>

Rendered Ul

The above XML renders the following UI:

Mame; | Load file

Load the contents of the following File as the message content to be processed.

LifeTimeAttribute

Description

The <LifeTimeAttribute> tag renders a Label, Text, and a group of Spin controls, representing a
time span. This allows you to enter values for Days, Hours, Minutes and Seconds.

Available attributes

Attribute Description M/O Default

label

field

required

Specifies the ID of the resource containing the text to display 0] -
on the Label to the left of all controls

Specifies the name of the field of the entity backed by the M -
rendered controls.

Specifies whether or not the entity field is required 0] false

Sample XML

<ui>

<panel columns="2">

<panel span="2" columns="3" margin="0">

Axway API Gateway 7.6.2

Developer Guide 124

Appendix A: Declarative UI reference

<LifeTimeAttribute label="VALIDITY LABEL" field="validity" required="true" />
</panel>

</panel>

</ui>

Rendered Ul

The above XML renders the following UI:

I daws I ﬁ hirs I j mmins I j SECS

NameAttribute

Description

The <NameAttribute> tag renders an SWT Label and accompanying Text widget. It is used to wrap
the following TextAttribute:

<TextAttribute field="name" label="NAME LABEL" required="true" />

The label NAME LABEL must exist in the appropriate resource.properties file

Sample XML

<ui>
<panel columns="2">
<NameAttribute />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

ame: I True Filker

Axway API Gateway 7.6.2 Developer Guide 125

Appendix A: Declarative UI reference

MsgAttrAttribute

Description

The <MsgAttrAttribute> tag renders an SWT Label and accompanying Combo widget populated
with a list of Axway message attributes.

Available attributes

Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display M -

on the Label.
field Specifies the name of the field of the entity backed by the M -

rendered controls.

span Value used in the creation of layout data for the Composite. 0] 1
Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required. 0] false

Sample XML

<ui>
<panel columns="2">
<MsgAttrAttribute field="sourceAttribute"
label="STRING REPLACE SRC ATTRIBUTE LABEL" required="true" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Axway API Gateway 7.6.2 Developer Guide 126

Appendix A: Declarative UI reference

Message Attribute: || ;l

authentication, method -
authentication, subject, format

authentication, subject.id
authentication, subject, orig. format
authentication, subject. arig.id

MultiValueTextAttrAttribute

Description

The <MultiValueTextAttribute> tag is similar to the TextAttribute tag in that it renders an SWT Text
widget (and optionally, a Label widget), backed by the specified field for the entity being
configured. The difference is that it caters for multiple values interspersed with the specified
separator.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.
The default value of the field will automatically appear in the
Text widget.

label Indicates that a Label should be rendered to the left of the Text O -
widget.
The value of this field is set to a resource identifier, specified in
aresource.properties file.

required Specifies whether or not the field is required. If required and 0] -
the user does not enter a value, a warning dialog appears,
prompting the user to enter a value for the field.

Axway API Gateway 7.6.2 Developer Guide 127

Appendix A: Declarative UI reference

Attribute Description M/O Default
span Value used in the creation of layout data for the controls that 0] 1
are rendered.
If a single-line control is being rendered, the span represents
the horizontal span of the following GridData:
GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = colSpan;
If multiline control is being rendered, the span represents the
horizontal span of the following GridData:
GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.verticalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalSpan = colSpan;
split Specifies the string used as a separator to the list of multiple 0 ,

values.

Sample XML

<ui>

</panel>
</ui>

<panel columns="2">
<MultiValueTextAttribute field="extension" label="EXTENSION LABEL"
required="false" split=";"/>

Rendered Ul

The above XML renders the following UI:

Extension: | Jpeq, .jpa

In this case, EXTENSION LABEL is resolved to the localized string “Extension:”.

Axway API Gateway 7.6.2

Developer Guide 128

Appendix A: Declarative UI reference

Elements Nto S

NumberAttribute

Description

The <NumberAttribute> tag renders an SWT Label and accompanying Text widget. The Text widget
only accepts numbers as input.

Available attributes
Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display M -
on the Label.
field Specifies the name of the field of the entity backed by the M -

rendered controls.

span Value used in the creation of layout data for the Composite. 0] 1
Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

readOnly Specifies whether or not the Text widget is editable. 0] false
min Specifies the minimum permitted value for the number field. 0] 0

max Specifies the maximum permitted value for the number field. 0] 100
required Specifies whether or not the entity field is required. 0] false

Sample XML

<ui>
<panel columns="2">
<NameAttribute />
<NumberAttribute field="pause" label="PAUSE FOR LABEL" required="true" />
</panel>
</ui>

Axway API Gateway 7.6.2 Developer Guide 129

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Marme: IF‘ause
FPause IlEIEIEIEI

panel

Description

The <panel> tag renders an SWT Composite widget, which is usually used to group other widgets.

Available attributes

Attribute

Description

M/O Default

label

columns

span

Used internally for binding purposes to allow the
control and its children to be enabled/disabled.

Value used in the creation of the layout data for the
Composite.

Columns represents the number of cell columns of
the following GridLayout:

GridLayout gridLayout = new GridLayout();

gridLayout.numColumns = columns;

Value used in the creation of layout data for the
Composite.

Span represents the horizontal span of the
following GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

0]

0]

Axway API Gateway 7.6.2

Developer Guide 130

Appendix A: Declarative UI reference

Attribute Description M/O Default
margin Value used in the creation of the layout dataforthe O 5
Composite.

Margin specifies the number of pixels to be used for
the Composite. It can be specified as a single
integer value whereby the following layout
members will be set:

GridLayout gridLayout = new GridLayout();
gridLayout.marginHeight = margin;
gridLayout.marginWidth = margin;
gridLayout.marginTop = margin;
gridLayout.marginBottom = margin;
gridLayout.marginLeft = margin;

gridLayout.marginRight = margin;

Margin can also be specified as a list of four integer
values, whereby the following layout members will
be set:

GridLayout gridLayout = new GridLayout();
StringTokenizer st =

new StringTokenizer (margin, “,”);
gridLayout.marginTop = st.nextToken() ;
gridLayout.marginBottom = st.nextToken();
gridLayout.marginLeft = st.nextToken();
gridLayout.marginRight = st.nextToken () ;

fill Value used in the creation of the layout data forthe O true
Composite.

Fill specifies that the layout should resize the
Composite to fill both horizontally and vertically,
and, depending on its parent, should grow
horizontally and vertically if the space is available.
Fill is usually used in conjunction with “span”. Fill
represents the following GridData:

GridData gridData = new GridData();
gridData.horizontalAlignment = GridData.FILL;
gridData.verticalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;

gridData.horizontalSpan = span;

Axway API Gateway 7.6.2 Developer Guide 131

Appendix A: Declarative UI reference

Attribute Description M/O Default
verticalSpacing Value used in the creation of the layout dataforthe O 5
Composite.

Specifies the number of pixels from the bottom
edge of one cell and the top edge of its
neighboring cell underneath.

GridLayout gridLayout = new GridLayout () ;
gridLayout.verticalSpacing = verticalSpacing;

indent Value used in the creation of the layout dataforthe O 0
Composite.

Specifies the number of pixels of the horizontal
margin that will be placed along the left and right
edges of the layout. The following layout member
will be set:

GridLayout gridLayout = new GridLayout () ;
gridLayout.marginWidth = indent;

horizontalAlignment Possible values are: 0 SWT.LEFT

« “center”- SWT.CENTER

« “right”- SWT .RIGHT

Value used in the creation of the layout data for the
Composite.

GridData gridData = new GridData();
gridData.horizontalAlignment = SWT.CENTER;

verticalAlignment Possible values are: 0 SWT.TOP

« “center”- SWT.CENTER

« “bottom”- SWT.BOTTOM

Value used in the creation of the layout data for the
Composite.

GridData gridData = new GridData();
gridData.verticalAlignment = SWT.CENTER;

widthHint Value used in the creation of the layout data forthe O
Composite.

GridData gridData = new GridData();
gridData.widthHint = 200;

Axway API Gateway 7.6.2 Developer Guide 132

Appendix A: Declarative UI reference

Attribute

Description

M/O Default

heightHint

minWidth

minHeight

Value used in the creation of the layout data for the
Composite.

GridData gridData = new GridData();
gridData.heightHint = 300;

Value used in the creation of the layout data for the
Composite.

GridData gridData = new GridData();
gridData.minimumWidth = 300;

Value used in the creation of the layout data for the
Composite.

GridData gridData = new GridData();
gridData.minimumHeight = 300;

0]

Sample XML

<ui>

</panel>

</ui>

type="FilterCircuit"
label="CONNECTION FAILURE POLICY SELECTION DIALOG TITLE"
title="CHOOSE CONNECTION FAILURE POLICY" />

<panel span="2" columns="2" indent="15"” margin="0"” label="SETTINGS PANEL">

<ReferenceSelector field="connectionFailurePolicy"

Rendered Ul

The above XML renders the following UI:

Note Thered rectangle s for illustration purposes only.

I send via prosxy

Priew Server: I

2

Axway API Gateway 7.6.2

Developer Guide 133

Appendix A: Declarative UI reference

PasswordAttribute

Description

The <PasswordAttribute> tag renders an SWT Label and accompanying Text widget. The Text
widget has its user-entered text masked with the **’ character.

Available attributes

Attribute

Description

M/O Default

label

field

span

required
widthHint
heightHint

multiline

wrap

Specifies the ID of the resource containing the text to
display on the Label.

Specifies the name of the field of the entity backed by
the rendered controls.

Value used in the creation of layout data for the
Composite.

Span represents the horizontal span of the following
GridData:

GridData gridData = new GridData() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridpata.horizontalSpan = span;

Specifies whether or not the entity field is required.
Specifies the preferred width of the control.
Specifies the preferred height of the control.

Specifies whether the control is a multiline Text widget.
If this attribute is not present the control defaults to a
single-line widget.

No masking occurs if this attribute is set to “true”. This
restriction iscoded in Text .setEchoChar () ;

Specifies whether the text should wrapped within the
control.

This attribute is conditional on the multiline attribute
being present and set to true.

o

false

SWT.DEFAULT

false

false

false

Axway API Gateway 7.6.2

Developer Guide 134

Appendix A: Declarative UI reference

Attribute Description M/O Default

vscroll Specifies whether a vertical scrollbar should be rendered. C false

This attribute is conditional on the multiline attribute
being present and set to true.

hscroll Specifies whether a horizontal scrollbar should be C false
rendered.
This attribute is conditional on the multiline attribute
being present and set to true.

Sample XML

<ui>

<group label="PROXY SETTINGS LABEL" columns="2" span="2">
<TextAttribute field="username" label="PROXY USERNAME LABEL"/>
<PasswordAttribute field="password" label="PROXY PASSWORD LABEL"/>
</group>

</ui>

Rendered Ul

The above XML renders the following UI:

Proxy Settings

Lsername: I roiak

Passwiord: | s

RadioGroupAttribute

Description

The <RadioGroupAttribute> tag renders an SWT Composite with 0 or more Buttons (style =
SWT .RADIO) defined using <choice> tags as children.

Axway API Gateway 7.6.2 Developer Guide 135

Appendix A: Declarative UI reference

RadioGroupAttribute - Available attributes

Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the M -
rendered controls.
columns Value used in the creation of layout data for the Composite. 0] 1
Columns represents the number of cell columns in the layout:
GridLayout layout = new GridLayout () ;
layout.numColumns = columns;
required Specifies whether or not the entity field is required. 0] false
choice - Available attributes
Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display M -
on the Label.
value Specifies one of the possible entity values for the *field’ defined M -
in the RadioGroupAttribute tag. This value will be tied to the
button, and saved to the Entity if this button is selected.
span Value used in the creation of layout data for the Button. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridDatal() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

Sample XML

The following example represents the “logMaskType” entity field, of which there are two possible
values: "SERVICE" and “FILTER". If the first radio button is selected (represented by the first
<choice> tag) the logMaskField will acquire the value "SERVICE". If the second radio button is
selected the logMaskField will acquire the value “FILTER".

The <RadioGroupAttribute> tag is not restricted to just having <choice> tags as children. A good

candidate is the <panel> container tag, as outlined in the example below. When the ‘USE_FILTER’
choice is selected the children of the subsequent panel are enabled automatically. When the ‘USE_
SERVICE’ choice is selected, these children are disabled automatically.

Axway API Gateway 7.6.2

Developer Guide 136

Appendix A: Declarative UI reference

<ui>
<panel>
<RadioGroupAttribute field="logMaskType" columns="1">
<choice value="SERVICE" label="USE SERVICE" />
<choice value="FILTER" label="USE FILTER" />
<panel indent="15" margin="0">
<BitMaskAttribute field="logMask" columns="3">
<choice value="1" label="LEVEL FATAL"/>
<choice value="2" label="LEVEL FAILURE"/>
<choice value="4" label="LEVEL SUCCESS"/>
</BitMaskAttribute>
</panel>
</RadioGroupAttribute>
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

' Lse Service Level Sekkings

i~ owerride Logging Level For this Filker

[T Fatall ¥ Failure [T Success

" Use Service Level Settings

= orverride Logging Lewvel For this Filker!

[T Fatal W Failure [Success

ReferenceSelector

Description

The <ReferenceSelector> tag renders an SWT Label, Text and Button control. When clicked, the
button displays a reference browser to allow you to easily select the required entity reference.

Axway API Gateway 7.6.2 Developer Guide 137

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default
label Specifies the ID of the resource containing thetext O -
to display on the Label.
field Specifies the name of the field of the entity backed M -
by the rendered controls.
required Specifies whether or not the entity field isrequired. O false
title Specifies the ID of the resource containing the text M -
to display on the title bar of the reference browser
dialog.
widthHint Specifies a width hint of reference browser. 0] SWT.DEFAULT
displayName Specifies the ID of the resource containing the 0] -
attribute or control name to be displayed in the
event of an error.
selectableTypes Specifies the entity types (as a comma separated M -
list) that are selectable in the TreeViewer displayed
in the Reference Selector dialog.
searches Specifies the entity types (as a comma separated M -
list) that are searchable for entities of those types
specified by the “selectableTypes” attribute.
trackChanges Specifies whether or not to track selection changes. O false

Sample XML

<ui>

</panel>
</ui>

<ReferenceSelector field="connectionFailurePolicy"
selectableTypes="FilterCircuit"
searches="ROOT CIRCUIT CONTAINER,CircuitContainer"
label="POLICY SELECTION DIALOG TITLE"
title="CHOOSE CONNECTION FAILURE POLICY" />

<panel span="2" columns="2" indent="15" margin="0" label="SETTINGS PANEL">

Axway API Gateway 7.6.2

Developer Guide 138

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Connection Failure Policy: I |

The following dialog is displayed when the browse button is clicked:

i Choose the policy to run on connection failure) ﬂ

EiD L@ Circuit Templates
BB Test Timestamp is Absent

D Test Timestamp is Present and Yalid
L1 BH Test Wss Username Token is Shsent

I'_—'IDTE Managerent Services

: 1B Allaws static content Far Service Manager to be retrieved =

EDF@ LDAP Sample Paolicies

O Login Farm Authi (LDAP)

— 8 Protect Management and Palicy Director Interfaces (LDAP)
e O Login Form &uthr

------ O EE Frotect Management and Policy Director Interfaces ll

()4 I Cancel |

SamlAttribute

Description
The <SamlAttribute> tag renders a SWT Combo with a list of SAML versions.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by O -
the rendered controls.

label Specifies the ID of the resource containing thetextto O -
display on the Label (to the left of the combo box).

required Specifies whether or not the entity field is required. 0 false

Axway API Gateway 7.6.2 Developer Guide 139

Appendix A: Declarative UI reference

Sample XML

<ui>

</ui>

<SamlAttribute label="SAML VERSION REQUIRED LABEL"

field="samlVersion" required="true" />

Rendered Ul

The above XML renders the following UI:

SAML wersian: 1.0 K%

SamlSubjectConfirmationAttribute

Description

The <SamlSubjectConfirmationAttribute> tag renders a SWT Combo with a list of available SAML
subject confirmation methods. The Attribute is very specific to using the SAML filter. You can only
have one <SamlSubjectConfirmationAttribute> per window.

When a SAML assertion is consumed by a downstream web service, the information contained in the
<SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the
API Gateway, or the issuer of the assertion, depending on what is configured.

The following table shows the available methods and their meanings :

Method Meaning

Holder The API Gateway includes the key used to prove that the API Gateway is the holder of
Of Key the key, or it includes a reference to the key.

Bearer The subject of the assertion is the bearer of the assertion.

SAML The subject of the assertion is the user that presented a SAML Artifact to the API
Artifact Gateway.

Sender Use this confirmation method to assert that the API Gateway is acting on behalf of
Vouches the authenticated end user. No other information relating to the context of the

assertion is sent. It is recommended that both the assertion and the SOAP Body are
signed if this option is selected.

If the Method field is blank then no <ConfirmationMethod> block is inserted into the
assertion.

Axway API Gateway 7.6.2 Developer Guide 140

Appendix A: Declarative UI reference

Note The entity field defaults to “subjectConfirmationMethod”.

Available attributes
Attribute Description M/O Default
label Specifies the ID of the resource containing the text to display 0] -
on the Label
required Specifies whether or not the entity field is required. M -
span Value used in the creation of layout data for the Combo. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf();
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = span;

columns Value used in the creation of the layout data for the Composite. O 2

Columns represents the number of cell columns of the
following GridLayout:

GridLayout gridLayout = new GridLayout () ;

gridLayout.numColumns = columns;

Sample XML

<ui>
<SamlSubjectConfirmationAttribute label="SAML SUBJECT CONF METHOD LABEL"
required="true" />

</ui>

Rendered Ul

The above XML renders the following UI:

Methud:|Eearer

Axway API Gateway 7.6.2 Developer Guide 141

Appendix A: Declarative UI reference

scrollpanel

Description

The <scrollpanel> tag renders an SWT ScrolledComposite widget. When rendered the control
automatically calculates the extent of its children so that the scroll bars are rendered correctly.

To facilitate ease-of-use, one of the following tags must be a direct child of scrollpanel:

« panel
. group

« tabFolder

Available attributes

Attribute

Description

M/O Default

label

widthHint

heightHint

minWidth

minHeight

Used internally for callback purposes to allow the extents of the
scrollpanel to be set correctly.

Value used in the creation of the layout data for the Composite:

GridData gridData = new GridDatal() ;
gridData.widthHint = 200;

Value used in the creation of the layout data for the Composite:

GridData gridData = new GridData() ;
gridData.heightHint = 300;

Value used in the creation of the layout data for the Composite:

GridData gridData = new GridData() ;
gridData.minimumwWidth = 300;

Value used in the creation of the layout data for the Composite:

GridData gridData = new GridDatal() ;
gridData.minimumHeight = 300;

M -

Sample XML

<ui>

<scrollpanel>
<panel columns="2">
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />

Axway API Gateway 7.6.2

Developer Guide 142

Appendix A: Declarative UI reference

<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
</panel>
</scrollpanel>
</ui>

Rendered Ul

The above XML renders the following UI:

Mame: I bhork ﬂ

hlame: I Abork

Mame: | Abort =

L

section

Description

The <section> tag renders an SWT ExpandableComposite widget, which allows for groups of
controls to be expanded or hidden from view.

To facilitate ease-of-use, one of the following tags must be a direct child of section:

« panel
« group

« tabFolder

Available attributes

Attribute Description M/O Default
label Specifies the text heading of the section. M -
expanded Specifies whether or not the section is expanded. O false

Axway API Gateway 7.6.2 Developer Guide 143

Appendix A: Declarative UI reference

Sample XML

<ui>
<section label="RS STATUS_LABEL" expanded="true">
<panel columns="2">
<TextAttribute field="name" label="RS STATUS LABEL" required="true" />
</panel>
</section>

</ui>

Rendered Ul
The above XML renders the following UI:

+ Response Status

Response Status I sa0

The section can also be collapsed as follows:

}F Response Status

SigningKeyAttribute

Description

The <SigningKeyAttribute> tag renders a SWT Radio Button and a Tab Folder which has three tabs
whose content includes SWT Buttons, Radio Buttons, Combo boxes, and so on.

Available attributes

Attribute Description M/O Default

subjectConfirmationNote Specifies whether a generic signing panel is 0] false
displayed or a specific SAML signing panel is
displayed. By default the generic signing panel is
displayed.

label Specifies the ID of the resource containing the 0] -
text to display on the Label.

Axway API Gateway 7.6.2 Developer Guide 144

Appendix A: Declarative UI reference

Attribute Description M/O Default
required Specifies whether or not the entity field is 0] false
required.

Sample XML

<ui>
<SigningKeyAttribute
subjectConfirmationNote="SUBJECT CONFIRMATION ASYMMETRIC NOTE LABEL"
required="false"/>

</ui>

Rendered Ul

The above XML renders the following UI:

Bsymmetric key Symmetric key

Asymmetric | ymmetric | Key Info |

Swramekric Key:

Generate Symmetric Key, and save in message attribuke:

Symmetric Key from Selector Expression:

Encrypk using Certificate:

From Certificate Skare: Signing Kesy:

From Selector Expression:

256

SizeAttribute

Description

The <SizeAttribute> tag renders an SWT Label (optional), Text, and Combo widgets, allowing you

to specify a numeric size value, and select one of the following age types:

Axway API Gateway 7.6.2

Developer Guide 145

Appendix A: Declarative UI reference

« Kb
« Mb
« Gb

Note The valuethatis persisted to the underlying entity is stored as bytes.

Available attributes
Attribute Description M/O Default
field Specifies the name of the field of the entity backed by the M -

rendered controls.

label Specifies the ID of the resource containing the text to display 0] -
on the Label.
span Value used in the creation of layout data for the Button. 0] 1

Span represents the horizontal span of the following GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

required Specifies whether or not the entity field is required. 0] false

Sample XML

<ui>
<panel columns="3" margin="0">
<SizeAttribute field="maxDbSize" label="OPDB MAX DB SIZE LABEL" required="true"/>
</panel>
</ui>

Rendered Ul

The above XML renders the following UTI:

Max. database size: 500 Mbh -

Axway API Gateway 7.6.2 Developer Guide 146

Appendix A: Declarative UI reference

SoftRefListAttribute

Description
The <SoftRefListAttribute> renders a SWT Combo that shows a list of entities of a certain type.

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

label Specifies the ID of the resource containing the text to display O -
on the Label.

refName Specifies Field value of the referenced entity that isdisplayed M -
in the Combo box.

displayName Specifies the name of the SoftRefListAttribute to be displayed O -
in the event of an error.

src Specifies the Shorthand Key to get the list of referenced M -
entities of a particular type.

required Specifies whether or not the entity field is required. M false

Sample XML

<ui>

</ui>

src="/[AuthnRepositoryGroup]name=Authentication Repositories/

<SoftRefListAttribute label="WS USERNAME TOKEN REPOSITORY NAME LABEL"

field="repository" refName="name"

[AuthnRepositoryBaseGroup]allowedFilter=WsUsernameFilter/ [AuthnRepositoryBase]" />

Rendered Ul

The above XML renders the following UI:

(1= ulul) g el A S Smnple Ackive Directory Repository

Axway API Gateway 7.6.2

Developer Guide 147

Appendix A: Declarative UI reference

SoftRefTreeAttribute

Description

The <SoftRefTreeAttribute> renders a jFace TreeViewer that shows the policies of a certain type.

Available attributes
Attribute Description M/O Default
field Specifies the name of the field of the entity backed bythe M -

rendered controls.

searches Comma separated list of Portable ESPKs. It will then M -
display all the entities represented by each Portable ESPK.

selectableTypes Specifies the type of entities that are selectable. M -

displayName Specifies the name of the SoftRefTreeAttribute to be 0] -
displayed in the event of an error.

span Value used in the creation of layout data for the controls 0] 1
that are rendered.

GridData gridData =
new GridData (GridData.FILL BOTH);
gridData.horizontalSpan = 1;

width Specifies the preferred width of the control. 0 300

height Specifies the preferred height of the control. 0] 300

Sample XML

<ui>
<panel columns="2">
<group label="POP POLICY LABEL" span="1" columns="1">
<SoftRefTreeAttribute field="filterCircuit"
searches="/[CircuitContainer]**/[FilterCircuit],/[FilterCircuit]"
selectableType="FilterCircuit"
displayName="POP CIRCUIT DISP NAME"
height="80"
width="100"
/>
</group>

Axway API Gateway 7.6.2 Developer Guide 148

Appendix A: Declarative UI reference

</panel>
</ui>

Rendered Ul

The above XML renders the following UI:
Policy ko use

= Dﬁ@ Circuit Templates ~
[1B Test Timestamp is Absent
] Test Timestamp is Present and Yalid
[Test wss Username Token is Absent
= Dﬁ@ Management Services
= [1[§ LoaP Sample Palicies
1B Login Form Authi (LDAR)
F] Protect Managerent and Policy Director Inkerfaces (LDAP)
] Allow static content for Service Manager to be retrieved
[Login Form Authi
] Prokect Management and Policy Director Interfaces
=-[1F& Palicy Library
= [ws-Palicy
[BE Remove All Security Tokens
[] Health Check,
[] Return HTTP Error 401: Unauthorized
] Return HTTP Error 403: Access Denied (Forbidden) w

In this case, POP_POLICY_LABEL is resolved to the localized string “Policy to use”.

SpinAttribute

Description

The <SpinAttribute> tag renders an SWT Text widget (and optionally, a Label widget), along with
two buttons, one for incrementing the current entity value, and one for decrementing the value.

Axway API Gateway 7.6.2 Developer Guide 149

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

The default value of the field will automatically appear in the
Text widget.

label Specifies the ID of the resource containing the text to display 0] -
on the Label (to the left of the spin control).

required Specifies whether or not the field is required. If required and 0] -
the user doesn’t enter a value, a warning dialog will appear,
prompting the user to enter a value for the field.

rangeMin Specifies the minimum value for the permitted range for the C -
entity value. rangeMax must also be present for the range to be
set correctly.

rangeMax Specifies the maximum value for the permitted range for the C
entity value. rangeMin must also be present for the range to be
set correctly.

unitLabel Additional label to appear to the right of the spin control. 0] -
Specifies the ID of the resource containing the text to display
on the Label.

Sample XML

<ui>
<panel columns="7">
<SpinAttribute field="hrs" label="HOUR" required="true"
rangeMin="0" rangeMax="23" />
<SpinAttribute field="mins" label="MIN" required="true"
rangeMin="0" rangeMax="59" />
<SpinAttribute field="secs" label="SEC" required="true"
rangeMin="0" rangeMax="59" />
</panel>
</ui>

Rendered Ul

The above XML renders the following UI:

Axway API Gateway 7.6.2 Developer Guide 150

Appendix A: Declarative UI reference

hu:uurlEl ::Iminllil ::Isecltl ::I

Elements Tto Z

tab

Description
The <tab> tag renders an SWT TabItem widget. They must be direct children of the <tabFolder>.

Available attributes

Attribute Description M/O Default

label Specifies the ID of the resource containing the text to display M -
on the TabItem.

Sample XML

<ui>
<panel columns="2" span="2">
<tabFolder span="2">
<tab label="CERTS">
<tab label="SSL">
</panel>
</ui>

Axway API Gateway 7.6.2 Developer Guide 151

Appendix A: Declarative UI reference

Rendered Ul

The above XML renders the following UI:

Trusted Cettificates | Client 55L Authentication

Chonose the trusted certificates

| Distinguished Mame -
D CH=Aa8 Certificate Services, O=Cor
[cr=addTrust Class 1 Ca Root, QU=
[cn=addTrust External Ca Rook, Ol=
[cr=addTrust Qualified Ca Roat, OL:
[cri=america Cnline Fook Certificatior
[cM=america Online Fook Certificatior
[0 cn=Baltimore CyberTrust Code Signir
O cr=Ealtimore CyberTrust Root, QU=
[cr=Certum Ca, O=Unizeto Sp. z 0.0
[cr=Certum Trusted Metwark Ca, QU
O cn=Chambers of Commerce Rook - 21
O cn=Chambers of Commerce Rook,
[cn=Class 2 Primary Ca, O=Certplus,
[0 cn=Class 3P Primary C&, O=Cerkplu: L‘

a | H

tabFolder

Description

The <tabFolder> tag renders an SWT TabFolder widget used to house Tabltems (generated by
using <tab> tags as children).

Available attributes

Attribute Description

M/O Default

span Value used in the creation of layout data for the controls that

are rendered.

GridData

gridData.
gridData.
gridData.
gridData.
gridData.

gridData = new GridDataf();
horizontalAlignment = GridData.FILL;
verticalAlignment = GridData.FILL;
grabExcessHorizontalSpace = true;
grabExcessVerticalSpace = true;
horizontalSpan = span;

0] 1

Axway API Gateway 7.6.2

Developer Guide 152

Appendix A: Declarative UI reference

Sample XML

<ui>

<panel columns="2" span="2">
<tabFolder span="2">
<tab label="CERTS">
<tab label="SSL">

</panel>

</ui>

Rendered Ul

The above XML renders the following UI:

Trusted Certificates | Client 55L Authentication

Choose the trusted certificates

| Distinguished Mame -

D Ch=AAh Certificate Services, O=Cor
[cr=addTrust Class 1 Ca Roak, QU=
[cr=addTrust External Ca Rook, OU=
O cr=addTrust Qualified Ca Roaok, OL:
O crn=america Online Fook Certificatior
O crn=america online Fook Certificatior
[0 cr=Ealtimare CyberTrust Code Signir
[cn=Ealtimore CyberTrusk Foat, Ol=
D CMN=Certurn CA, O=nizeto Sp. z 0.0
[cr=Certum Trusted Metwark Ca, QU
[cr=chambers of Commerce Roat - 21
O cr=chambers of Commerce Roat, O
O cn=Class 2 Primary Ca, O=Certplus,
O cn=Class 3P Primary Ca, O=Cerkplu: L‘
1] | B

TablePage

Description

The <TablePage> tag renders a jFace TableViewer that represents a list of entities of the specified
type. These entities can be added, edited, and deleted using the available buttons.

Axway API Gateway 7.6.2

Developer Guide 153

Appendix A: Declarative UI reference

Available attributes

Attribute

Description

M/O

Default

type

dialogClass

columnPropertie
S

sortColumns
columnResource

S

columnWidths

deleteText

span

dialog.setFlavor

tableHeight

Specifies the type of the entity that is represented
by the table.

Specifies the full name of the Java class used to
implement the dialog employed to add/edit items
in the table.

Specifies a comma-separated list of entity fields to
be displayed in table columns.

Specifies a comma-separated list of columns to
make sortable.

Specifies a comma-separated list of resource IDs
(fromaresource.properties file) that
resolve to the text to be displayed on the table
columns.

Specifies a comma-separated list of column
widths.

Specifies the resource ID that resolves to the text
to be displayed to the user when an item from the
table is about to be deleted.

Value used in the creation of layout data for the
controls that are rendered.

GridData gridData = new GridDataf();
gridData.horizontalAlignment =
GridData.FILL;

gridData.verticalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalSpan = span;
Specifies a declarative XML file to use to construct
the dialog used to add or edit the entities for this
table.

Specifies the preferred height of the control.

o

0]

SWT.DEFAUL
T

Axway API Gateway 7.6.2

Developer Guide 154

Appendix A: Declarative UI reference

Sample XML

<ui>

<panel columns="2">
<TablePage type="Property"
dialogClass="com.vordel.client.manager.filter.exec.EnvironmentVariableDialog"
columnProperties="name,value" sortColumns="name,value"
columnResources="COLUMN VARIABLE, COLUMN VALUE" columnWidths="300,200"
deleteText="DELETE VARIABLE CONFIRMATION"
dialog.setFlavor="environment variable dialog.xml" />

</panel>

</ui>

Sample dialog flavor XML

<panel columns="2">

<TextAttribute field="name" label="NAME LABEL" required="true"/>
<TextAttribute field="value" label="VALUE LABEL" required="false"/>
</panel>

Rendered Ul

The above XML renders the following UI:

Environment variables to set;

Yariahle | Yalue |

add | Edi| oeleie |

The dialog is rendered as follows:

¥ Environment variable x|

Environment wariable name: | |

Yalue: |

0.4 I Cancel |

Axway API Gateway 7.6.2 Developer Guide 155

Appendix A: Declarative UI reference

text

Description
The <text> tag renders an SWT Text widget.

Available attributes

Attribute

Description

M/O

Default

label

multiline

wrap

readOnly

span

widthHint

heightHint

Specifies the ID of the resource containing the text to

display on the Label.

Specifies whether the control is a multiline Text widget.
If this attribute is not present the control defaults to a

single-line widget.

Specifies whether the text should be wrapped within the

control.

This attribute is conditional on the multiline attribute

being present and set to true.

Specifies whether or not the Text widget is read-only.

Value used in the creation of layout data for the controls

that are rendered.

If a single-line control is being rendered, span represents

the horizontal span of the following GridData:

GridData gridData = new GridDataf() ;

gridData.horizontalAlignment = GridData.FILL;

gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = colSpan;

If a multiline control is being rendered, span represents

the horizontal span of the following GridData:

GridData gridData = new GridDataf() ;

gridData.horizontalAlignment = GridData.FILL;
gridData.verticalAlignment = GridData.FILL;

gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalSpan = colSpan;

Specifies the preferred width of the control.

Specifies the preferred height of the control.

o

o

false

false

SWT.DEFAULT

SWT.DEFAULT

Axway API Gateway 7.6.2

Developer Guide 156

Appendix A: Declarative UI reference

Attribute Description M/O Default
vscroll Specifies whether a vertical scroll bar should be C -
rendered.
This attribute is conditional on the multiline attribute
being present and set to true.
hscroll Specifies whether a horizontal scroll bar should be C -

rendered.
This attribute is conditional on the multiline attribute
being present and set to true.

Sample

XML

<ui>

</ui>

<text label="KEYPAIRS PUBLICKEY LABEL" multiline="true" vscroll="true"
wrap="true" heightHint="100" widthHint="350" readOnly="true"/>

Rendered Ul

The above XML renders the following UI:

Public Kesy:

TextAttribute

Descrip

tion

The <TextAttribute> tag renders an SWT Text widget (and optionally, a Label widget), backed by

the specified fi

Axway API Gateway 7.6.2

ield for the entity being configured.

Developer Guide 157

Appendix A: Declarative UI reference

Available attributes

Attribute

Description M/O

Default

field

label

readOnly

required

span

widthHint
heightHint

multiline

Specifies the name of the field of the entity backed by
the rendered controls.

=<

The default value of the field will automatically appear in
the Text widget.

Indicates that a Label should be rendered to the left of 0]
the Text widget.

The value of this field is set to a resource identifier,
specified ina resources.properties file.

Specifies whether or not the Text widget is read-only. 0

Specifies whether or not the field is required. If required 0]
and the user does not enter a value, a warning dialog
appears, prompting the user to enter a value for the field.

Value used in the creation of layout data for the controls O
that are rendered.

If a single-line control is being rendered, span represents
the horizontal span of the following GridData:

GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;

gridData.horizontalSpan = colSpan;

If multiline control is being rendered, span represents the
horizontal span of the following GridData:
GridData gridData = new GridDataf() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.verticalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;

gridData.horizontalSpan = colSpan;
Specifies the preferred width of the control. 0]
Specifies the preferred height of the control. 0]

Specifies whether the control is a multiline Text widget.)

If this attribute is not present the control defaults to a
single-line widget.

SWT.DEFAULT

SWT.DEFAULT

false

Axway API Gateway 7.6.2

Developer Guide 158

Appendix A: Declarative UI reference

Attribute Description M/O Default
wrap Specifies whether the text should be wrapped withinthe C false
control.

This attribute is conditional on the multiline attribute
being present and set to true.

vscroll Specifies whether a vertical scroll bar should be C false
rendered.
This attribute is conditional on the multiline attribute
being present and set to true.

hscroll Specifies whether the a horizontal scrollbar should be C false
rendered.
This attribute is conditional on the multiline attribute
being present and set to true.

Sample XML

<ui>

<panel columns="2">
<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
</panel>

</ui>

Rendered Ul

The above XML renders the following UI:

Marme: ||

In this case, EXCEPTION_NAME is resolved to the localized string “Name:".

ul

Description

The <ui> tag is the root of a declarative XML document.

Available attributes

This tag does not require any attributes.

Axway API Gateway 7.6.2 Developer Guide 159

Appendix A: Declarative UI reference

Sample XML

<ui>

<panel columns="2">

<TextAttribute field="name" label="EXCEPTION NAME" required="true" />
</panel>

</ui>

validator

Description

The <validator> tag is used to include a validator class.

Available attributes

Attribute Description M/O Default

class Specifies the full name of the Java class used to validate input. M -

Sample XML

<ui>
<validator

class="com.vordel.client.manager.filter.dirscan.DirectoryScannerDialogValidator" />
</ui>

XPathAttribute

Description

The <XPathAttribute> tag renders an SWT Combo widget and three SWT Button widgets within an
SWT Composite displayed as a Button bar.

Axway API Gateway 7.6.2 Developer Guide 160

Appendix A: Declarative UI reference

Available attributes

Attribute Description M/O Default

field Specifies the name of the field of the entity backed by the M -
rendered controls.

xpathGroup Specifies the entity type of all XPath expressions to be M -
displayed.
label Specifies the ID of the resource containing the text to display O -

on the Label (to the left of the combo box).
required Specifies whether or not the entity field is required. 0] false

span Value used in the creation of layout data for the Button. 0] 1

Span represents the horizontal span of the following
GridData:

GridData gridData = new GridData() ;
gridData.horizontalAlignment = GridData.FILL;
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = span;

Sample XML

<ui>
<XPathAttribute field="insertTokenLocationXPath"
xpathGroup="XPathTokenInsertionLocationGroup" />

</ui>

Rendered Ul

The above XML renders the following UTI:

Axway API Gateway 7.6.2 Developer Guide 161

	 Preface
	Who should read this guide
	How to use this guide
	Related documentation
	Support services
	Training services

	 Accessibility
	Screen reader support
	Support for high contrast and accessible use of colors

	 Updates and revisions
	Changes in version 7.6.2
	Changes in version 7.6.1
	Changes in version 7.6.0
	Changes in version 7.5.3
	Changes in version 7.5.2
	Changes in version 7.5.1
	Changes in version 7.4.2
	Changes in version 7.4.1
	Changes in version 7.4.0

	 1 Install the code samples
	Installation prerequisites
	Unzip the downloaded zip file
	Location of code samples

	 2 Build the code samples
	Build prerequisites
	Build the samples
	Description of samples

	 3 Add a custom filter to API Gateway
	Use JavaScript to call existing Java code
	Invoke the policy
	Test the policy

	Use JavaScript for custom requirements
	Invoke the policy
	Test the policy

	Java and JavaScript translations
	Write a custom filter using the extension kit
	Create the TypeDoc
	Create the Filter class
	Create the Processor class
	Create the declarative UI XML file
	Create the Policy Studio classes
	Build the classes
	Load the TypeDocs
	Construct a policy

	 4 Define user interfaces using declarative XML
	Load the declarative XML file
	Declarative XML file

	 5 Unit test a filter using the Traffic Monitor API
	Write a JUnit test for the Health Check policy filters

	 6 Java interfaces for extending API Gateway
	Create a loadable module
	LoadableModule interface
	LoadableModule example – TimerLoadableModule

	Create a message creation listener
	MessageCreationListener interface

	Create a message listener
	MessageListener interface
	MessageListener example – FilterInterceptor

	 7 Access configuration values dynamically at runtime
	Example selector expressions
	Database query results
	LDAP directory server search results

	 8 Key Property Store
	 9 Entity Store
	Entity types
	References to other entities
	Entity type definitions

	Use the ES Explorer
	Load a type definition
	Locate entities using shorthand keys

	 10 Debug custom Java code with a Java debugger
	 11 Get diagnostics output from a custom filter
	Add custom trace output to custom code
	Add custom log4j output to custom code

	 12 Enable API Gateway with JMX
	 13 Automate tasks with Jython scripts
	Java and Jython translations

	 14 API Gateway REST APIs
	API Gateway component REST APIs
	Import the API Gateway REST API into API Manager
	Add a Jersey-based REST API
	Add a servlet using Policy Studio
	Test the REST Jabber service

	Get the ID of a group or API Gateway instance
	Print the topology using managedomain
	Use curl to call the Topology REST API
	Use Jython to query the Topology API

	Appendix A: Declarative UI reference
	Declarative XML overview
	Element quick reference
	Elements A to C
	ActorAttribute
	AgeAttribute
	AuthNRepositoryAttribute
	binding
	BitMaskAttribute
	button
	ButtonAttribute
	CategoryAttribute
	CertDNameAttribute
	certSelector
	CertTreeAttribute
	CheckboxGroupAttribute
	CircuitChainTable
	ComboAttribute
	comboBinding
	ComboStackPanel
	Condition
	CronAttribute
	ContentEncodingAttribute

	Elements D to M
	DirectoryChooser
	ESPKReferenceSummaryAttribute
	FieldTable
	FileChooserText
	group
	HTTPStatusTableAttribute
	include
	label
	LifeTimeAttribute
	NameAttribute
	MsgAttrAttribute
	MultiValueTextAttrAttribute

	Elements N to S
	NumberAttribute
	panel
	PasswordAttribute
	RadioGroupAttribute
	ReferenceSelector
	SamlAttribute
	SamlSubjectConfirmationAttribute
	scrollpanel
	section
	SigningKeyAttribute
	SizeAttribute
	SoftRefListAttribute
	SoftRefTreeAttribute
	SpinAttribute

	Elements T to Z
	tab
	tabFolder
	TablePage
	text
	TextAttribute
	ui
	validator
	XPathAttribute

