APl Gateway

Version 7.6.2
zzzzzzzzzz

OAuth User Guide

axway>\r

Copyright © 2020 Axway. All rights reserved.
This documentation describes the following Axway software:
Axway API Gateway 7.6.2

No part of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of the copyright owner, Axway.

This document, provided for informational purposes only, may be subject to significant modification. The descriptions and
information in this document may not necessarily accurately represent or reflect the current or planned functions of this
product. Axway may change this publication, the product described herein, or both. These changes will be incorporated in
new versions of this document. Axway does not warrant that this document is error free.

Axway recognizes the rights of the holders of all trademarks used in its publications.

The documentation may provide hyperlinks to third-party web sites or access to third-party content. Links and access to
these sites are provided for your convenience only. Axway does not control, endorse or guarantee content found in such
sites. Axway is not responsible for any content, associated links, resources or services associated with a third-party site.

Axway shall not be liable for any loss or damage of any sort associated with your use of third-party content.

Contents

Preface .. 8
Who should read thisguide il 8
How to use this guide 8
Related documentation il 9
SUPPO SBIVICES . 9
TraINING SEIVICES . . e e el 10

Accessibility | . 11
Screen reader SUPPO . 11
Support for high contrast and accessible use of colors 11

Updates and revisions .. il 12
Changes in VEISION 7.6.2 e 12
Changesin version 7.6. 1 . 12
Changes in version 7.6.0 12

1 OAuth and OpenID Connect concepts 13
OAULN 2.0 L 13
OpenID Connect 1.0 14

2 Introduction to API Gateway OAuth 2.0 server 15
API Gateway OAUth CONCEPTS i 15
OAuth server example WorkfloOW ... L 16
API Gateway OAuth server features 17

3 API Gateway OAuth 2.0 authentication flows 19
Run the sample sCripts ... il 20
Authorization code grant (or web server) flow 20

Obtain an access tOKeN _ .. il 21
Run the sample client 24
Implicit grant (or user agent) flow .. il 26
Obtain an access toOKeN _ .. il 27
Run the sample Client .. . 29
Resource owner password credentials flow __ 30
Request an access toKen 31
Handlethe response _ 32
Run the sample client 32
Client credentials grant flow 33
Request an access toKen ...l 33

Axway API Gateway 7.6.2 OAuth User Guide 3

Handle the response i 34

Run the sample Client .. . 34
W FlOW il 35
Create a JWT bearer tOKeN . .. L 35
Request an access toKen .. iiil. 37
Handle the response 38
Run the sample Client ... 38
Revoke token flow il 38
Run the sample client ... iil. 39
RESPONSE COARS il 40
Token information service flow 41
Run the sample client 41
RESPONSE COARS . il 42

4 Set up API Gateway as an OAuth 2.0 server 43
Enable OAuth endpoints ... il 43
5 API Gateway as an OAuth 2.0 authorization server 45
Authorization server policiesand filters 45
Manage access tokens and authorization codes 47
6 OAuth 2.0 authorization server filters 50
Get access token information 51
OV IV W . 51
TOKEN SEEEINGS . o 51
Monitoring Settings 51
Advanced settings oL 52
Get access token using authorization code 52
OV IV W . 52
Application validation settings _ il 53
Access token settings il 53
Monitoring settings 54
Get access token using client credentials 54
OV IV BW . 54
Application validation settings 55
Access token settings il 55
MoNItoring SEttiNgS oo 56
Get access token using W il 57
OV IV W . 57
Application validation settings 57
Access token settingsl 58
Monitoring Settings 59
Get access token using SAML @ssertion 60
OV IV W 60

Axway API Gateway 7.6.2 OAuth User Guide 4

SAML assertion validation settings 60

Access token settingsl 61
Monitoring Settingsl 62
Consume authorization reqUEeSES 63
Validation Settings o oL 63
Authorization code settings 64
Access token settingsl 65
Advanced settings 66
Refresh access toKeN 67
Application validation settings _ il 67
Access token settings il 68
MONItONNG SEtINGS - ... 69
Get access token using resource owner credentials 69
OV IV W . 69
Application validation settings _ il 70
Access token settings il 70
Monitoring settings 72
REVOKE TOKEN . 72
OV IV BW . 72
Revoke token settings L 73
MoNItoriNg SettiNgS .. .o . 73

7 API Gateway as an OAuth 2.0 resource Server 74
Resource server policies and filters 74
Create custom OAuth protected resources 75
Register and manage OAuth client applications _ 76
Manage client applications in the Client Application Registry 76
Scopesin APL Gateway il 77
Client Application Registry storage and settings 79

8 OAuth 2.0 resource server filters 82
Validate access toKeN 82
OV IV W . e 82
General Settings il 82
RESPONSE COAES 83

9 API Manager as an OAuth 2.0 resource server 85
Protect APIs with OAUTN . 85
Scopesin APL Manager 85
Enable global scopesin APIManageriiieimm 86
Authorization management in APL Manager i 86
View and revoke OAuth authorizationsin APIManager oo, 87
Register and manage client applicationsin APIManager 87

Axway API Gateway 7.6.2 OAuth User Guide 5

10 Set up API Gateway OAuth client 89

Import sample client applications il 89
11 API Gateway as an OAuth 2.0 client _ 91
Introduction to API Gateway OAuth client 91
API Gateway OAuth client features 92
OAuth 2.0 example client workflow 93
Client policies and filters 94
Configure OAuth client application credentials 95
Add application credentials iiiill. 96
Add QAU PrOVIder ... 100
Create a callback URL listener 100
Manage client access tOKeNS 101
Set Bearer token in authorization header 102
12 OAuth 2.0 client filters iiil.. 103
Delete an OAuth client access token il 103
OV IV W . 103
General SEtiNgS ... L 104
Get OAuth client access toKen 104
OV IV W . 104
General SEtiNgS 104
SO SEttINGS . o 104
Additional Settings . ..l 105
Redirect resource owner to authorization server 105
OV IV W . 105
General SEttiNgS 105
Refresh an OAuth client access token 106
OV IV W . 106
General SEtiNgS 106
SO SEttINGS . o 107
Additional Settings . ..l 107
Retrieve OAuth client access token from token storage 107
OV IV W . 107
General SettiNgS 108
Save an OAuth client access token 108
OV IV W . 108
General SEtiNgS 108
Set Bearer token in authorization header 109
13 API Gateway and OpenID Connect 110
Introduction to API Gateway OpenID Connect i iiiiii . 110
OpenID ConNeCt CONCEPTS e 110
Relationship to OAUth 2.0 . . 111

Axway API Gateway 7.6.2 OAuth User Guide 6

PrereqUISIEES 113

OpenID ConneCt floW . 113
Build an OpenlID Connect IdP SerVer e e 114
Build an OpenID Connect Client 115

14 OpenlD Connect filters 116
Create an OpenlID Connect ID tOKEN ... i e 116
General SEtiNGS 116

Verify an OpenID Connect ID token L 117
General SEtiNGS 117

15 API Gateway OAuth clientdemo __ 119
Clent POIICIES 120

16 Deploy OAuth configuration 121

Deploy the OAUth serviCe ... il 121

Deploy the OAuth client demo 122
Appendix A: OAuth 2.0 message attributes _ 123
OAuth 2.0 server message attributes 123
accesstoken Methods ... il 123
accesstoken.authn methods 124
authzcode methods 124
oauth.client.details methods 125
Example of querying a message attribute L. 126
OAuth scope attributes el 128
OAuth SAML bearer attributes 128
OAuth 2.0 client message attributes 129
oauth.client.accesstoken methods ii... 129
oauth.client.application methods 130

Axway API Gateway 7.6.2 OAuth User Guide 7

Preface

This guide describes how to use the OAuth 2.0 and OpenID Connect features of API Gateway. It
describes how to configure API Gateway as an OAuth server and as an OAuth client. It also describes
the OpenID Connect support provided by API Gateway.

Who should read this guide

The intended audience for this guide is policy developers and system integrators who are
responsible for configuring OAuth and OpenID Connect flows.

Before configuring OAuth or OpenID Connect flows in API Gateway you should understand exactly
what message filters are, and how they are chained together to create a message policy. These
concepts are documented in detail in the API Gateway Policy Developer Guide. You should also have
an understanding of API Gateway concepts and features. For more information, see the API Gateway
Concepts Guide.

How to use this guide

This guide should be used in conjunction with the other guides in the API Gateway documentation

set.

Before you begin using the OAuth features of API Gateway, review this guide thoroughly. The
following is a brief description of the contents of each section:

OAuth and OpenlID Connect concepts on page 13 — Describes OAuth 2.0 and OpenID Connect
concepts.

Introduction to API Gateway OAuth 2.0 serveron page 15 — Describes the features of API
Gateway as an OAuth server.

API Gateway OAuth 2.0 authentication flows on page 19 — Describes the OAuth flows supported
by API Gateway.

Set up API Gateway as an OAuth 2.0 serveron page 43 — Describes how to set up API Gateway
as an OAuth server.

API Gateway as an OAuth 2.0 authorization server on page 45 — Describes the OAuth
authorization server features of API Gateway.

OAuth 2.0 authorization server filters on page 50 — Describes how to configure the OAuth
authorization server filters.

API Gateway as an OAuth 2.0 resource server on page 74 — Describes the OAuth resource server
features of API Gateway.

Axway API Gateway 7.6.2 OAuth User Guide 8

Preface

o OAuth 2.0 resource server filters on page 82 — Describes how to configure the OAuth resource
server filters.

o APIManager as an OAuth 2.0 resource serveron page 85 — Describes how to use API Manager
as an OAuth resource server.

o API Gateway as an OAuth 2.0 client on page 91 — Describes the OAuth client features of API
Gateway.

o OAuth 2.0 client filters on page 103 — Describes how to configure the OAuth client filters.

o API Gateway and OpenID Connecton page 110 — Describes how to use the OpenID Connect
features of API Gateway.

« OpenlID Connect filterson page 116 — Describes how to configure the OpenID Connect filters.
o API Gateway OAuth client demo on page 119 — Describes the OAuth client demo.

« Deploy OAuth configuration on page 121 — Describes how to deploy OAuth configuration in
API Gateway.

« OAuth 2.0 message attributes on page 123 — Describes the message attributes used in the API
Gateway OAuth filters.

Related documentation

The AMPLIFY API Management solution enables you to create, publish, promote, and manage
Application Programming Interfaces (APIs) in a secure and scalable environment. For more
information, see the AMPLIFY API Management Getting Started Guide.

The following reference documents are also available on the Axway Documentation portal at
https://docs.axway.com:

o Supported Platforms

Lists the different operating systems, databases, browsers, and thick client platforms supported
by each Axway product.

« Interoperability Matrix

Provides product version and interoperability information for Axway products.

Support services

The Axway Global Support team provides worldwide 24 x 7 support for customers with active
support agreements.

Email support@axway.com or visit Axway Support at https://support.axway.com.

See "Get help with API Gateway" in the API Gateway Administrator Guide for the information that
you should be prepared to provide when you contact Axway Support.

Axway API Gateway 7.6.2 OAuth User Guide 9

https://docs.axway.com/
mailto:support@axway.com
https://support.axway.com/

Preface

Training services

Axway offers training across the globe, including on-site instructor-led classes and self-paced online
learning. For details, go to: http://www.axway.com/support-services/training

Axway API Gateway 7.6.2 OAuth User Guide 10

http://www.axway.com/support-services/training

Accessibility

Axway strives to create accessible products and documentation for users.

This documentation provides the following accessibility features:
» Screen reader supporton page 11

o Support for high contrast and accessible use of colorson page 11

Screen reader support

« Alternative text is provided for images whenever necessary.

« The PDF documents are tagged to provide a logical reading order.

Support for high contrast and accessible use of
colors

« Thedocumentation can be used in high-contrast mode.
« Thereis sufficient contrast between the text and the background color.

« Thegraphics have the right level of contrast and take into account the way color-blind people
perceive colors.

Axway API Gateway 7.6.2 OAuth User Guide 11

Updates and revisions

This guide includes the following documentation changes.

Changes in version 7.6.2

No changes.

Changes in version 7.6.1

No changes.

Changes in version 7.6.0

« Added information on deploying OAuth in Policy Studio. This replaces the

deployOauthConfig script that was used in earlier versions. For more details, see Deploy

OAuth configuration on page 121.

Axway API Gateway 7.6.2

OAuth User Guide 12

OAuth and OpenlD Connect
concepts

OAuth 2.0 is a delegation protocol that is useful for conveying authorization decisions across a
network of web-enabled applications and APIs. OAuth 2.0 is not an authentication protocol;
however, OpenID Connect can be used along with OAuth to create an authentication and identity
protocol on top of this delegation and authorization protocol.

OAuth 2.0

OAuth 2.0 is specified in the OAuth 2.0 Authorization Framework. OAuth can be used to provide:

« Delegated access
« Reduction of password sharing between users and third-parties
« Revocation of access

For example, when users share their credentials with a third-party application, the only way to
revoke access from that application is for the user to change their password. However, this means
that access from all other applications is also revoked. With OAuth, users can revoke access from
specific applications without breaking other applications that should be allowed to continue to act
on their behalf.

OAuth achieves this by introducing an authorization layer and separating the role of the client from
that of the resource owner. OAuth defines four primary roles:

« Resource owner (RO): The entity that is in control of the data exposed by an API (for example,
an end user).

« Client: The mobile application, web site, and so on, that wants to access data on behalf of the
resource owner.

« Authorization server (AS): The Security Token Service (STS) or OAuth server that issues tokens.
« Resource server (RS): The service that exposes the data (for example, an API).

The client requests access to resources controlled by the resource owner and hosted by the resource
server, and is issued a different set of credentials than those of the resource owner. Instead of using
the resource owner's credentials to access protected resources, the client obtains an access token - a
string denoting a specific scope, lifetime, and so on. Access tokens are issued to third-party clients
by an authorization server with the approval of the resource owner. The client uses the access token
to access the protected resources hosted by the resource server.

OAuth defines two kinds of tokens:

« Access tokens: These tokens are presented by a client to the resource server (for example, an
API), to get access to a protected resource.

Axway API Gateway 7.6.2 OAuth User Guide 13

http://tools.ietf.org/html/rfc6749

1 OAuth and OpenlID Connect concepts

« Refresh tokens: These are used by the client to get a new access token from the authorization
server (for example, when the access token expires).

OAuth tokens can include a scope. Scopes are like permissions or rights that a resource owner
delegates to a client, so that they can perform certain actions on their behalf. A client can request
specific rights, but a user might only grant a subset, or might grant others that were not requested.
The OAuth specification does not define specific scopes, meaning that you can use any string to
represent an OAuth scope.

OAuth defines several different flows or message exchange patterns. The most commonly used is the
authorization code (web server) flow. For more details on this flow and the other flows that API
Gateway supports, see API Gateway OAuth 2.0 authentication flows on page 19.

OpenlD Connect 1.0

OpenID Connect is specified in the OpenID Connect 1.0 specification. OpenID Connect builds on the
OAuth protocol and defines an interoperable way to use OAuth 2.0 to perform user authentication.
OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. It enables clients to
verify the identity of the user based on the authentication performed by an authorization server, as
well as to obtain basic profile information about the user.

OpenID Connect defines the following roles:

« Relying party (RP): An OAuth client that supports OpenID Connect. The mobile application,
web site, and so on, that wants to access data on behalf of the resource owner.

« OpenlID provider (OP): An OAuth authorization server that is capable of authenticating the user
and providing claims to a relying party about the authentication event and the user.

OpenID Connect defines a new kind of token, the ID token. The OpenID Connect ID token isa
signed JSON Web Token (JWT) that is given to the client application alongside the regular OAuth
access token. The ID token contains a set of claims about the authentication session, including an
identifier for the user (sub), an identifier for issuer of the token (iss), and the identifier of the
client for which this token was created (aud). Since the format of the ID token is known by the
client, it can parse the content of the token directly.

In addition to the claims in the ID token, OpenID Connect defines a standard protected resource
(the UserInfo endpoint) that contains claims about the current user. OpenID Connect defines a set
of standardized OAuth scopes that map to claims (profile, email, phone, and address). If
the end user authorizes the client to access these scopes, the OP releases the associated data
(claims) to the client when the client calls the UserInfo endpoint. OpenID Connect also defines a
special openid scope that switches the OAuth server into OpenID Connect mode.

Axway API Gateway 7.6.2 OAuth User Guide 14

http://openid.net/specs/openid-connect-core-1_0.html

Introduction to API Gateway
OAuth 2.0 server

OAuth 2.0 is an open standard for authorization that enables client applications to access server
resources on behalf of a specific resource owner. OAuth also enables resource owners (end users) to
authorize limited third-party access to their server resources without sharing their credentials. For
example, a Gmail user could allow LinkedIn or Flickr to have access to their list of contacts without
sharing their Gmail user name and password.

The API Gateway can be used as an authorization serverand as a resource server. An authorization
server issues tokens to client applications on behalf of a resource owner for use in authenticating
subsequent API calls to the resource server. The resource server hosts the protected resources, and
can accept or respond to protected resource requests using access tokens.

Note This guide assumes that you are familiar with the terms and concepts described in the
OAuth 2.0 Authorization Framework.

APl Gateway OAuth concepts

The API Gateway uses the following definitions of basic OAuth 2.0 terms:

« Resource owner — An entity capable of granting access to a protected resource. When the
resource owner is a person, it is referred to as an end user.

« Resource server — The server hosting the protected resources, and which is capable of
accepting and responding to protected resource requests using access tokens. In this case, the
API Gateway acts as a gateway implementing the resource server that sits in front of the
protected resources.

« Client application — A client application making protected requests on behalf of the resource
owner and with its authorization.

« Authorization server — The server issuing access tokens to the client application after
successfully authenticating the resource owner and obtaining authorization. In this case, the
API Gateway acts both as the authorization server and as the resource server.

« Scope - Used to control access to the resource owner's data when requested by a client
application. You can validate the OAuth scopes in the incoming message against the scopes
registered in the API Gateway. An example scopeisuserinfo/readonly.

Axway API Gateway 7.6.2 OAuth User Guide 15

http://tools.ietf.org/html/rfc6749

2 Introduction to API Gateway OAuth 2.0 server

OAuth server example workflow

Assume that you are using an image printing website such as Canon to print some of your photos.
You also have some photos on your Flickr account that you would like to print. However, you
currently must download all these locally, and then upload them again to the printing website,
which is inconvenient. You would like to be able to sign into Flickr from your Canon printing profile,
and print your photos directly.

This problem can be solved using the example OAuth 2.0 web server flow shown in the following
diagram:

Resource Server

Client Application %
(5 Access data 5
______________________________) E
O
E .
[|

¥, e
. e Y

~
N
~
~

.. Issue access token

©

Access service

Delegates
authentication
authorization

[}
[}
1
1
[}
[}
1
1
[}
[}
1
1
[}
]
1
~
~
~

B ittt <

@ Grant access

Resource Owner

(User) Authorization Server

Out of band, the Canon printing client application preregisters with Flickr and obtains a client ID and
secret. The client application registers a callback URL to receive the authorization code from Flickr
when you, as resource owner, allow Canon to access the photos from Flickr. The printing
application has also requested access to an APInamed /f1lickr/photos, which has an OAuth
scope of photos.

The steps in the diagram are described as follows:

1. You are using a mobile phone and are signed into the Canon image printing website. You click
to print Flickr photos. The Canon client application redirects you to the Flickr OAuth
authorization server. You must already have a Flickr account.

Axway API Gateway 7.6.2 OAuth User Guide 16

2 Introduction to API Gateway OAuth 2.0 server

2. You log in to your Flickr account, and the Flickr authorization server asks you "Do you want to
allow the Canon printing application to access your photos?" You click Yes to authorize.

3. When successful, the printing application receives an authorization code at the callback URL
that was preregistered out of band.

Note You have not shared your Flickr user name and password with the printing
application. At this point, you as resource owner are no longer involved in the
process.

4. Theclient application gets the authorization code, and must exchange this short-lived code for
an access token. The client application sends another request to the authorization server,
saying it has a code that proves the user has authorized it to access their photos, and now
issues the access token to be sent on to the API (resource server). The authorization server
verifies the authorization code and returns an access token.

5. Theclient application sends the access token to the API (resource server), and receives the
photos as requested.

APl Gateway OAuth server features

API Gateway provides the following features to support OAuth 2.0:

« Web-based client application registration
« Generation of authorization codes, access tokens, and refresh tokens
« Support for the following OAuth authentication flows:
o Authorization code grant (web server)
o Implicit grant (user agent)
o Resource owner password credentials
o Client credentials grant
o JWT
o Refresh token
o Revoke token
o Token information service
o SAML assertion

For more information on the supported flows, see API Gateway OAuth 2.0 authentication flows
on page 19.

« Sample client applications for all supported flows

The following diagram shows the roles of the API Gateway as an OAuth 2.0 resource server and
authorization server:

Axway API Gateway 7.6.2 OAuth User Guide 17

2 Introduction to API Gateway OAuth 2.0 server

l’ E
1
i
H Applications
i
M. . Accesses Protected i
... Resources i
. ., !
A Yoo i
Authorization Server \
Resource Server i bata
. !
Issues Access .. A i
Tokens h i
API Authorized Access to |
Accesses Protected Resources | Application
. 1
Services B4 ! Servers
i
Authenticates .- i
Grants Access . 1
i
. H Service Bus
i
1
i
1
| Cloud-Based
T i Services
[| ! y

User Monitoring and Control
(Resource Owner)

Axway API Gateway 7.6.2 OAuth User Guide 18

APl Gateway OAuth 2.0
authentication flows

API Gateway can use the OAuth 2.0 protocol for authentication and authorization. API Gateway can
act as an OAuth 2.0 authorization server and supports several OAuth 2.0 flows that cover common
web server, JavaScript, device, installed application, and server-to-server scenarios. This section
describes each of the supported OAuth 2.0 flows in detail, and shows how to run sample scripts
demonstrating the flows.

The API Gateway supports the following authentication flows:

« Authorization code grant (or web server) flow on page 20 — The web server authentication flow
is used by applications that are hosted on a secure server. A critical aspect of the web server
flow is that the server must be able to protect the issued client application's secret.

« Implicit grant (or user agent) flow on page 26 — The user agent authentication flow is used by
client applications residing on the user's device. This can be implemented in a browser using a
scripting language such as JavaScript or Flash. These client applications cannot keep the client
application secret confidential.

o Resource owner password credentials flow on page 30 — This user name and password
authentication flow can be used when the client application already has the resource owner's
credentials.

« Client credentials grant flow on page 33 — This user name and password flow is used when the
client application needs to directly access its own resources on the resource server. Only the
client application's credentials are used in this flow. The resource owner's credentials are not
required.

o JWT flowon page 35 — This flow is similar to OAuth 2.0 client credentials. A JSON Web Token
(JWT) is a JISON-based security token encoding that enables identity and security information
to be shared across security domains.

« Refresh token — After the client application has been authorized for access, it can use a refresh
token to get a new access token. This is only done after the consumer already has received an
access token using the authorization code grant or resource owner password credentials flow.

« Revoke token flow on page 38 — A revoke token request causes the removal of the client
application permissions associated with the particular token to access the end-user's protected
resources.

« Token information service flow on page 41 — The OAuth token information service responds to
requests for information on a specified OAuth 2.0 access token.

o SAML assertion — The OAuth 2.0 Access Token using SAML Assertion filter enables an
OAuth client to request an access token using a SAML assertion. This flow is used when a client
wishes to utilize an existing trust relationship, expressed through the semantics of the SAML
assertion, without a direct user approval step at the authorization server.

Axway API Gateway 7.6.2 OAuth User Guide 19

3 API Gateway OAuth 2.0 authentication flows

For more information on running sample scripts to demonstrate the flows, see Run the sample
scriptson page 20.

Run the sample scripts

API Gateway includes sample Jython scripts for all supported OAuth flows in the following directory
of your API Gateway installation:

INSTALL DIR/samples/scripts/oauth

To run a sample script:

1.

2

Open a UNIX shell or DOS command prompt in the following directory:

INSTALL DIR/samples/scripts

. Usethe run.shor run.bat utility to execute the appropriate script.

The following example shows how to run the implicit grant.py sample script:

sh run.sh oauth/implicit grant.py

Authorization code grant (or web server) flow

The authorization code or web server flow is suitable for clients that can interact with the end-user's
user-agent (typically a web browser), and that can receive incoming requests from the authorization

server (can act as an HTTP server). The authorization code flow is also known as the three-legged
OAuth flow.

The authorization code flow is as follows:

1.

The web server redirects the user to the API Gateway acting as an authorization server to
authenticate and authorize the server to access data on their behalf.

After the user approves access, the web server receives a callback with an authorization code.

After obtaining the authorization code, the web server passes back the authorization code to
obtain an access token response.

After validating the authorization code, the API Gateway passes back a token response to the
web server.

After the token is granted, the web server accesses the user's data.

Axway API Gateway 7.6.2 OAuth User Guide 20

3 API Gateway OAuth 2.0 authentication flows

Web Server

User User Agent (Browser) (Client App) Authorization Server Resource Server
Enter URL -
L Open URL -
»
Start OAuth Process :l

¢ Redirect to Authz Server
<

Opens redirect URL

»
>
Present|Authorization UT .
»
- Present Authorization UT
<
Present credentials and authorize or deny
»
Present submitted|data from user o
>
Verify and create Authorization
Code

Redirect to Web Server |with Authorization Code

>
<

Follow redirect to Web Server

Present Authorization Code |
»

Return Access Token

call protected resource| with Access Token

v

Return|protected resource

Obtain an access token

This section details the steps for obtaining an access token.

Web server redirects user to authorization endpoint

Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response_ Required. Must be set to code.
type

client id Required. The client ID generated when the application was registered in the
Client Application Registry.

redirect Optional. The location where the authorization code will be sent. This value
uri must match one of the values provided in the Client Application Registry.

scope Optional. A space delimited list of scopes, which indicate the access to the
resource owner's data requested by the application.

Axway API Gateway 7.6.2 OAuth User Guide 21

3 API Gateway OAuth 2.0 authentication flows

Parameter Description

state Recommended. Any state the consumer wants reflected back to itself after
approval during the callback. This value is used to prevent cross-site request
forgery (CSRF) attacks, the consumer delivers this value to the authorization
server when making an authorization request. For this reason, the value must be
opaque, kept secret by the consumer, and known only to the consumer and the
OAuth provider.

The following is an example URL:

https://apigateway/oauth/authorize?client id=SampleConfidentialApp
&response_type=code
&&redirect uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html
&scope=https%$3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email

Note During this step the resource owner user must approve access for the application web
server to access their protected resources, as shown in the following example window.

Confidential App

is requesting permission to access:

+ Access and change your email contacts

Learn more

Mo thanks

Web server receives callback with authorization code

The response to the above request is sent to the redirect uri. If the user approves the access
request, the response contains an authorization code and the state parameter (if included in the
request). If the user does not approve the request, the response contains an error message. All
responses are returned to the web server on the query string. For example:

https://localhost/oauth callback&code=9srN6sqmjrvG5bWvNB42PCGjulTFVV

Web server exchanges authorization code for access
token

After the web server receives the authorization code, it can exchange the authorization code for an
access token and a refresh token. This request is an HTTPS POST, and includes the following
parameters:

Axway API Gateway 7.6.2 OAuth User Guide 22

3 API Gateway OAuth 2.0 authentication flows

Parameter Description

grant type Required. Must be setto authorization code

code Required. The authorization code received in the redirect above.
redirect Required. The redirect URL registered for the application during application
uri registration.

client id Optional. The client id obtained during application registration.
client Optional. The client secret obtained during application registration.
secret

format Optional. Expected return format. The default is j son. Possible values are:

e urlencoded
e json

e xml

Note Iftheclient idand client secret arenot provided as parametersin the HTTP
POST, they must be provided in the HTTP basic authentication header:
Authorization base64Encoded(client id:client secret).

The following example HTTPS POST shows some parameters:

POST /api/oauth/token HTTP/1.1

Content-Type:application/x-www-form-urlencoded

client id=SampleConfidentialApp&client secret=6808d4b6-ef09-4b0d-8f28-3b05dad%c48ec
&code=9srN6samjrvG5bWvNB42PCGjulTEFVV

&redirect uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html

&grant type=authorization code

&format=query

Web server receives access token

After the request is verified, the API Gateway sends a response to the client. The following
parameters are in the response body:

Parameter Description

access_ The token that can be sent to the resource server to access the protected
token resources of the resource owner (user).

Axway API Gateway 7.6.2 OAuth User Guide 23

3 API Gateway OAuth 2.0 authentication flows

Parameter Description

refresh Atoken that can be used to obtain a new access token.

token

expires The remaining lifetime on the access token.

type Indicates the type of token returned. This field always has a value of Bearer.

The following is an example response:

HTTP/1.1 200 OK

Cache-Control:no-store

Content-Type:application/json

Pragma:no-cache{
"access_ token":“091G451HZ0V83opz6udiSEjchPynd2Ss9...... W,
"token type":"Bearer",
"expires_in":"3600",

Web server uses access token to access protected
resources

After the web server obtains an access token, it can gain access to protected resources on the
resource server by placing itin an Authorization:Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization:Bearer 091G451HZ0V83opz6udiSEjchPynd2Ss9

Host:apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization:Bearer 091G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Run the sample client

The following Jython sample client creates and sends an authorization request for the authorization
grant flow to the authorization server:

INSTALL DIR/samples/scripts/oauth/authorization code.py

To run the sample, perform the following steps:

Axway API Gateway 7.6.2 OAuth User Guide 24

3 API Gateway OAuth 2.0 authentication flows

1. Open ashell prompt atthe INSTALL DIR/samples/scripts directory.

2. Execute the following command:

> run oauth/authorization code.py

The script outputs the following:

> Go to the URL here:

http://127.0.0.1:8080/api/oauth/authorize?client id=SampleConfidentialApp
&response_type=code
&scope=https%$3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email
&redirect uri=https%3A%2F%2Flocalhost%2Foauth callback

Enter Authorization code in dialog

3. Copy the URL into a browser, and perform the following steps as prompted:

« Provide login credentials to the authorization server. The default Client Application
Registry user name is regadmin.

« When prompted, grant access to the client application to access the protected resource.

After the resource owner has authorized and approved access to the application, the
authorization server redirects a fragment containing the authorization code to the redirection
URL. For example:

https://localhost/oauth callback&code=AaI50r3RYB2uOgiyqVsLs1ATIY0110

In this example, the authorization code is:

AaI50r3RYB2uOgiygVsLsl1ATIY0110

4. Enter this value into the Enter Authorization Code dialog.

-

Enter Authorization Code @

L] Enter Authorization Code:

OK Cancel

The script exchanges the authorization code for an access token, and then accesses the
protected resource using the access token. For example:

Enter Authorization code in dialog
AuthZ code:RAaI50r3RYB2uOgiyqVsLsl1ATIY0110
Exchange authZ code for access token

Sending up access token request using grant type set to authorization code

Axway API Gateway 7.6.2 OAuth User Guide 25

3 API Gateway OAuth 2.0 authentication flows

Response from access token request:200

Parsing the json response

‘k**‘k‘k*****************ACCESS TOKEN RESPONSE*****‘k‘k**‘k***********************‘k*

Access token received from authorization server icPgKP2uVUD2thvAZ5ENhsQb66ffnZEC
XHYRQEZz52zP8aGzcobLV3AR

Access token type received from authorization server Bearer

Access token expiry time:3599

Refresh token:NpNbzIVVvj8MhMmcWx2zsawxxJ3YADfcOXIx1ZvwOtIhh8

KA KA R A AR AR A A A A AR AR A AR A A A AR A AR A AR AR A A A hA A A A Ak hA Ak Ak kA h Ak kA Ak Ak xhk*k

Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request is:200

<html>Congrats! You've hit an OAuth protected resource</html>

Implicit grant (or user agent) flow

The implicit grant (user agent) authentication flow is used by client applications (consumers)
residing on the user's device. This can be implemented in a browser using a scripting language such
as JavaScript, or from a mobile device, or a desktop application. These consumers cannot keep the
client secret confidential (application password or private key).

The user agent flow is as follows:

1. The web server redirects the user to the API Gateway acting as an authorization server to
authenticate and authorize the server to access data on their behalf.

2. After the user approves access, the web server receives a callback with an access token in the
fragment of the redirect URL.

3. After the token is granted, the application can access the protected data with the access token.

User User Agent (Browser) Javascript client Authorization Server Web Server Resource Server

Enter URL

»
» Page with Javascript

Execute Javascript :l

<
<

Redirect to Authz
response_type=token

Opens redirect URL

v

Present|Authorization UI

A

o Present Authorization UI
<

Present credentials and authorize or den

Present submitted|data from user

»

Verify and create Access Token :I

Redirect to Web Server with|Access Token in # fragment

A

Follow redirect to|Web Server with out fragment

v

» Page with Javascript
<

Extract Access Token from fragment:l

Call| protected resource with Access|Token

A4

Return protected resource

A

Axway API Gateway 7.6.2 OAuth User Guide 26

3 API Gateway OAuth 2.0 authentication flows

Obtain an access token

This section details the steps for obtaining an access token.

Web server redirects user to authorization endpoint

Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response Required. Must be setto token.
type

client id Required. The client ID generated when the application was registered in the
Client Application Registry.

redirect Optional. The location where the access token will be sent. This value must
uri match one of the values provided in the Client Application Registry.

scope Optional. A space delimited list of scopes, which indicates the access to the
resource owner's data requested by the application.

state Optional. Any state the consumer wants reflected back to it after approval
during the callback.

The following is an example URL:

https://apigateway/oauth/authorize?client id=SampleConfidentialApp
&response_ type=token
&&redirect uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html
&scope=https%3A%2F$2Flocalhost$3A8090%2Fauth%2Fuserinfo.email

Note During this step the resource owner user must approve access for the application (web
server) to access their protected resources, as shown in the following example window.

Confidential App

is requesting permission to access:

» Access and change your email contacts

Learn more

Mo thanks

Axway API Gateway 7.6.2 OAuth User Guide 27

3 API Gateway OAuth 2.0 authentication flows

Web server receives callback with access token

The response to the above request is sent to the redirect uri. If the user approves the access
request, the response contains an access token and the state parameter (if included in the request).
For example:

https://localhost/oauth callback#access token=194377hj2781FQd44AzqT3%Zg
&token type=Bearer

&expires in=3600

If the user does not approve the request, the response contains an error message.

After the request is verified, the API Gateway sends a response to the client. The following
parameters are contained in the fragment of the redirect:

Parameter Description

access_ Thetoken that can be sent to the resource server to access the protected
token resources of the resource owner (user).

expires Theremaining lifetime on the access token.
type Indicates the type of token returned. This field always has a value of Bearer.

state Optional. If the client application sent a value for state in the original
authorization request, the state parameter is populated with this value.

Web server uses access token to access protected
resources

After the application obtains an access token, it can gain access to protected resources on the
resource server by placing itin an Authorization:Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization:Bearer 091G451HZ0V83opz6udiSEjchPynd2Ss9

Host:apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization:Bearer 091G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Axway API Gateway 7.6.2 OAuth User Guide 28

3 API Gateway OAuth 2.0 authentication flows

Run the sample client

The following Jython sample client creates and sends an authorization request for the implicit grant
flow to the authorization server:

INSTALL DIR/samples/scripts/ocauth/implicit grant.py

To run the sample, perform the following steps:

1. Open ashell prompt at the INSTALL DIR/samples/scripts directory.

2. Execute the following command:

> run oauth/implicit grant.py

The script outputs the following:

> Go to the URL here:

http://127.0.0.1:8080/api/oauth/authorize?client id=SampleConfidentialApp
&response type=token
&scope=https%3A%2F%2Flocalhost$3A8090%2Fauth%2Fuserinfo.email
&redirect uri=https%3A%2F%2Flocalhost%2Foauth callback
&state=1956901292

Enter Access Token code in dialog

After the resource owner has authorized and approved access to the application, the
authorization server redirects to the redirection URI a fragment containing the access token. For
example:

https://localhost/oauth callback#
access_token=4owzGyokzLLOBS5FH4tOMk7Eqf1wqY fENEDXZ1mGvN7u7a2Xexy20U9
&expires in=3599

&state=1956901292

&token type=Bearer

In this example, the access token is:

4owzGyokzLLOBSFH4tOMk7Eqf1wgY fENEDXZ1mGvN7u7a2Xexy20U9

3. Enter this value into the Enter Access Token from fragment dialog.

Axway API Gateway 7.6.2 OAuth User Guide 29

3 API Gateway OAuth 2.0 authentication flows

Enter Access Token from fragment ﬁ

L] Enter Access Token from fragment:

OK Cancel

The script attempts to access the protected resource using the access token. For example:

‘k‘k*‘k*‘k*‘k**‘k***‘k*****ACCESS TOKEN RESPONSE*************‘k***‘k***‘k***‘k***‘k

Access token received from authorization server 4owzGyokzLLQOBSFH4tOMk7EgflwgYfEN
EDXZ1mGvN7u7a2Xexy20U9

KA KA AR A R AR A AR A AR AR A AR AR KA A R A AR AR A AR A AR AR A AR A AR A kK
Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request i1s:200

<html>Congrats! You've hit an OAuth protected resource</html>

Resource owner password credentials flow

The resource owner password credentials flow is also known as the username-password
authentication flow. This flow can be used as a replacement for an existing login when the
consumer already has the user's credentials.

The resource owner password credentials grant type is suitable in cases where the resource owner
has a trust relationship with the client (for example, the device operating system or a highly
privileged application). The authorization server should take special care when enabling this grant
type, and only allow it when other flows are not viable.

This grant type is suitable for clients capable of obtaining the resource owner's credentials
(username and password, typically using an interactive form). It is also used to migrate existing
clients using direct authentication schemes such as HTTP basic or digest authentication to OAuth by
converting the stored credentials to an access token.

Axway API Gateway 7.6.2 OAuth User Guide 30

3 API Gateway OAuth 2.0 authentication flows

Resource Owner Client Authorization Server Resource Server

Resource Owner’s credentials

Y

Resource Owner’s credentials
>
>

Authenticate Resource Owner

Authenticate Client

Ul

» Access token with
optional refresh token

Access protected resource|with access token

\4

Protected|resource response

A

Request an access token

The client token request should be sentin an HTTP POST to the token endpoint with the following
parameters:

Parameter Description

grant type Required. Must be setto password.

username Required. The resource owner's user name.

password Required. The resource owner's password.

scope Optional. The scope of the authorization.

format Optional. Expected return format. The default is j son. Possible values are:

e urlencoded
e json

e xml

The following is an example HTTP POST request:

POST /api/oauth/token HTTP/1.1

Content-Length:424
Content-Type:application/x-www-form-urlencoded; charset=UTF-8
Host:192.168.0.48:8080

Authorization:Basic czZCaGRSa3F0MzpnWDEmMQOmMEOM2JW

grant type=password&username=johndoe&password=A3ddj3w

Axway API Gateway 7.6.2 OAuth User Guide 31

3 API Gateway OAuth 2.0 authentication flows

Handle the response

The API Gateway validates the resource owner's credentials and authenticates the client against the
Client Application Registry. An access token, and optional refresh token, is sent back to the client on
success. For example, a valid response is as follows:

HTTP/1.1 200 OK
Cache-Control:no-store
Content-Type:application/json
Pragma:no-cache
{
"access_ token":“091G451HZ0V83opz6udiSEjchPynd2Ss9...... ",
"token type":"Bearer",
"expires_in":"3600",
"refresh token":"8722gffy2229220002iuueee7GP........... "

Run the sample client

The following Jython sample client sends a request to the authorization server using the resource
owner password credentials flow:

INSTALL DIR/samples/scripts/oauth/resourceowner password credentials.py

To run the sample, open a shell prompt at INSTALL DIR/samples/scripts, and execute
the following command:

> run oauth/resourceowner password credentials.py

The script outputs the following:

Sending up access token request using grant type set to password

Response from access token request:200

Parsing the json response

**********************ACCESS TOKEN RESPONSE***********************************

Access token received from authorization server lrGHhFhFwSmycXStIzaljjvXlSaac9
JNIgviF70PiV80nx1SIsrxVA

Access token type received from authorization server Bearer

Access token expiry time:3600

KA KA AR A R A A A A A A A A A A AR AR A AR A AR AR A AR A KRR AR A AN AR KA AR A AR AR A AR AR A Ak K

Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request is:200

<html>Congrats! You've hit an OAuth protected resource</html>

Axway API Gateway 7.6.2 OAuth User Guide 32

3 API Gateway OAuth 2.0 authentication flows

Client credentials grant flow

The client credentials grant type must only be used by confidential clients. The client can request an
access token using only its client credentials (or other supported means of authentication) when the
client is requesting access to the protected resources under its control. The client can also request
access to those of another resource owner that has been previously arranged with the authorization
server (the method of which is beyond the scope of the specification).

Client Authorization Server Resource Server

Client credentials

Authenticate Client :

Access token with
NO refresh token

\4

Access protected resource|with access token

\4

Protected|resource response

Request an access token

The client token request should be sentin an HTTP POST to the token endpoint with the following
parameters:

Parameter Description

grant_type Required. Mustbesetto client credentials.
scope Optional. The scope of the authorization.

format Optional. Expected return format. The defaultis json . Possible values are:

e urlencoded
e json

e xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1
Content-Length:424

Content-Type:application/x-www-form-urlencoded; charset=UTF-8

Axway API Gateway 7.6.2 OAuth User Guide 33

3 API Gateway OAuth 2.0 authentication flows

Host:192.168.0.48:8080
Authorization:Basic czZCaGRSa3F0MzpnWDEmMQOmEOM2JW

grant_type=client credentials

Handle the response

The API Gateway authenticates the client against the Client Application Registry. An access token is
sent back to the client on success. A refresh token is not included in this flow. An example valid
response is as follows:

HTTP/1.1 200 OK
Cache-Control:no-store
Content-Type:application/json
Pragma:no-cache

{
"access_token":“091G451HZ0V830pz6udiSEjchPynd2Ss9...... ",

"token type":"Bearer",

"expires in":"3600"

Run the sample client

The following Jython sample client sends a request to the authorization server using the client
credentials flow:

INSTALL DIR/samples/scripts/oauth/client credentials.py

To run the sample, open a shell prompt at INSTALL DIR/samples/scripts, and execute
the following command:

> run oauth/client credentials.py

The script outputs the following:

Sending up access token request using grant type set to client credentials

Response from access token request:200

Parsing the json response

Kok k ok kok Kk kK kKK XKk * KK ACCESS TOKEN RESPONSE * * % ok ko ok sk ok ok sk ok ok ok ok ok ok k ok ok ok ok ok ok ko o ok ok ok o

Access token received from authorization server OjtVvNusLg2ujy3a6IXHhavqgdE
PtK7gSmIj9fL18qgywPyX8bKEsjgF

Access token type received from authorization server Bearer

Access token expiry time:3599

KA KA AR A R AR A A A AR A AR A AR AR A AR AR A AR A AR AR A AN A A A AR A A A A A Ak K

Now we can try access the protected resource using the access token

Axway API Gateway 7.6.2 OAuth User Guide 34

3 API Gateway OAuth 2.0 authentication flows

Response from protected resource request is:200

<html>Congrats! You've hit an OAuth protected resource</html>

JWT flow

A JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and
security information to be shared across security domains.

Server Application Authorization Server Resource Server

Token Request (with JWT)

»

Token Response

Call API with|Access Token

In the OAuth 2.0 JWT flow, the client application is assumed to be a confidential client that can
store the client application's private key. The X.509 certificate that matches the client's private key
must be registered in the Client Application Registry. The API Gateway uses this certificate to verify
the signature of the JWT claim.

For more details on the OAuth 2.0 JWT flow, see:
https://tools.ietf.org/html/rfc7523

Create a JWT bearer token

To create a JWT bearer token, perform the following steps:

1. Construct a JWT header in the following format:

{"alg" :"RS256"}

2. Base64url encode the JWT header, which results in the following:

eyJhbGci0iJSUzIINiJ9

3. Create a JWT claims set, which conforms to the following rules:

« Issuer(iss) must bethe OAuth client 1id, orthe remote access application for
which the developer registered their certificate.

« Audience (aud) must match the value configured in the JWT filter. By default, this
value is as follows:

Axway API Gateway 7.6.2 OAuth User Guide 35

https://tools.ietf.org/html/rfc7523

3 API Gateway OAuth 2.0 authentication flows

http://apigateway/api/oauth/token

« Validity (exp) must be the expiration time of the assertion, within five minutes,
expressed as the number of seconds from 1970-01-01T0:0: 0Z measured in UTC.

« Time when assertion was issued (iat) is measured in seconds after 00: 00 : 00 UTC,
January 1, 1970.

o JWT must be signed (using RSA SHA256). For more details, see:
https://tools.ietf.org/html/rfc7515

o JWT must conform with the general format rules specified in:
https://tools.ietf.org/html/rfc7519

For example:

iss":"SampleConfidentialApp",
"aud":"http://apigateway/api/ocauth/token",
"exp":"1340452126",

"iat":"1340451826"

4. Base64url encode the JWT claims set, resulting in:

eyJpc3MiOiJTYWlwbGVDb25maWR1bnRpYWxBcHALLCIhdWQi01i JodHRwO18vYXBpc2VydmV
yL2FwaS9vYXvV0aC90b2t1lbiIsImV4cCI6IJEzZNDAONTIxM]YiLCIpYXQ1i01iIxMzQwNDUxODI2In0=

5. Create a new string from the encoded JWT header from step 2, and the encoded JWT claims set
from step 4, and append them as follows:

Base64URLEncode (JWT Header) + . + Base64URLEncode (JWT Claims Set)

This results in a string as follows:

eyJhbGci0iJSUzIINiJ9.eyJpc3MiOiAIU2FtcGx1029uzZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHR

w

018vYXBpc2VydmVyL2FwaS9vYXvV0aC90b2t1biIsICJleHAIO1AIMTMOMTMINDYWNSISICIpYXQiOiAi
MTMOMTM1NDMwNSJ9

6. Sign the resulting string in step 5 using SHA256 with RSA. The signature must then be
base64url encoded. The signature is then concatenated with a . character to the end of the
base64url-encoded representation of the input string. The result is the following JWT (line
breaks added for clarity):

{Baseb4url-encoded header}.

{Baseb4url-encoded claim set}.

This results in a string as follows:

Axway API Gateway 7.6.2 OAuth User Guide 36

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519

3 API Gateway OAuth 2.0 authentication flows

eyJhbGci01iJSUzZIIN1J9. eyJpc3MiOiAIU2FtcGx1Q29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHR

wOi8vYXBpc2VydmVyL2FwaS9vYXV0aC90b2t1biIsICJ1eHAIOiAIMITMOMTMINDYWNSISICIpYXQiO1iA

iMTMOMTMINDMwNSJ9 . i1WR80801bQtT52zBaGIQ]jveOZFIWGTkdVC6LofI8dNOakvvDOm7IvUZtPp4dx3
KJEDj4YcsyCEAPhfopUlZO3LE-1NP1bxB5dsmizbFIc20GZr7Z04I1DEf920JHg9DGawQos I~
s9GcIRQk

-TUPF41Vy1Q7PidPWKR90hm3c2gt8

Request an access token

The JWT bearer token should be sentin an HTTP POST to the token endpoint with the following
parameters:

Parameter Description

grant Required. Must besetto urn:ietf:params:oauth:grant-
type type:jwt-bearer.

assertion Required. Must be set to the JWT bearer token, base64url-encoded.

format Optional. Expected return format. The default is j son. Possible values are:

e urlencoded
e json

e xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1

Content-Length:424

Content-Type:application/x-www-form-urlencoded; charset=UTF-8

Host:192.168.0.48:8080

grant type=urn%3Aietf$3Aparams$3Acauth%3Agrant-type$3Ajwt-bearer
&assertion=eyJhbGciOiJSUzI1IN1J9.eyJpc3MiOiAiU2FtcGx1Q29uZmlkZW50a
WEsQXBwIiwgImF1ZCI6ICJodHRWO18vYXBpc2VydmVyL2FwaSovYXv0aC90b2t1lbilsT
CJ1eHAIOiAIMTMOMTMINDYWNSISICIpYXQ10iAIMTMOMTMINDMWNSJ9 . 1 1TWR80801bOt
T5zBaGIQjveOZFIWGTkdVC6LofI8dNOakvvDOm7IvUZtPp4dx3KJED]4YcsyCEAPhfop
U1lZO3LE-iNP1bxB5dsmizbFIc20GZr7204I1Df920JHgIDGawQosJI-s9GcIRQk-TIUPF
41VylQ7PidPWKR90hm3c2gt8

Axway API Gateway 7.6.2 OAuth User Guide 37

3 API Gateway OAuth 2.0 authentication flows

Handle the response

API Gateway returns an access token if the JWT claim and access token request are properly formed,
and the JWT has been signed by the private key matching the registered certificate for the client
application in the Client Application Registry.

For example, a valid response is as follows:

HTTP/1.1 200 OK

Cache-Control:no-store

Content-Type:application/json

Pragma:no-cache

{
"access_token":“091G451HZ0V83opz6udiSEjchPynd2Ss9...... W,
"token type":"Bearer",

"expires in":"3600",

Run the sample client

The following Jython sample creates and sends a JWT bearer token to the authorization server:

INSTALL DIR/samples/scripts/oauth/jwt.py

To run the sample, open a shell prompt at INSTALL DIR/samples/scripts, and execute
the following command:

> run oauth/jwt.py

Revoke token flow

In some cases a user might wish to revoke access given to an application. An access token can be
revoked by calling the API Gateway revoke service and providing the access token to be revoked. A
revoke token request causes the removal of the client permissions associated with the particular
token to access the end-user's protected resources.

Axway API Gateway 7.6.2 OAuth User Guide 38

3 API Gateway OAuth 2.0 authentication flows

Client Authorization Server

Client authentication with token to be revoked‘

>

Verify Client can revoke token :

Revoke token response

»i
Y

The endpoint for revoke token requests is as follows:

https://HOST:8089/api/oauth/revoke

The token to be revoked should be sent to the revoke token endpointin an HTTP POST with the
following parameters:

Parameter Description

token Required. A token to be revoked (for example,
4eclEUX1N60VIO0ZBbaDTI977SV3TI9KgJ3ayOvsdgghGA4).

token Optional. A hint specifying the token type. For example, access token or
type hint refresh token.

The following is an example POST request:

POST /api/oauth/revoke HTTP/1.1

Content-Type:application/x-www-form-urlencoded; charset=UTF-8
Host:192.168.0.48:8080

Authorization:Basic U2FtcGx1Q29uZmlkZW50aWFsQXBwO]Y4MDhkNGI2LWVMMDktNGIwZC04ZjI4LT
NiMDVkYT1jNDhlYw==token=4eclEUX1N60VIO0ZBbaDTI977SV3TO9KqJ3ayOvs4gghGA4

&token type hint=refresh token

Run the sample client

The following Jython sample client creates a token revoke request to the authorization server:

INSTALL DIR/samples/scripts/ocauth/revoke token.py

To run the sample, open a shell prompt at INSTALL DIR/samples/scripts, and execute
the following command:

> run oauth/revoke token.py

Paste the value associated with the token in the dialog:

Axway API Gateway 7.6.2 OAuth User Guide 39

3 API Gateway OAuth 2.0 authentication flows

Enter token value ﬁ

@ Enter the token to be revoked:
||ZEIbaDTI9??SVSTQKqJSayOusdfgthMl

| 0K || Cancel|

L 4

Select the type of token hint in the next dialog:

Choose the token hint type ﬁ

Choose the token hint:

‘aoceas_token | b d ‘

| 0K || Cancel|

L A

If you select none, no token type hint parameter is specified in the POST request. If you
select access_token, the POST request contains token type hint=access token.If
you select refresh token, the POST request contains token type hint=refresh
token.

When the authorization server receives the token revocation request, it first validates the client
credentials and verifies whether the client is authorized to revoke the particular token based on the
client identity.

Note Only the client that was issued the token can revoke it.
The authorization server decides whether the token is an access token or a refresh token:

« Ifitisan access token, this token is revoked.

« Ifitisa refresh token, all access tokens issued for the refresh token are invalidated, and the
refresh token is revoked.

Response codes

The following HTTP status response codes are returned:
« HTTP 200 if the token was revoked successfully or if an invalid token was submitted.
o HTTP 401 if client authentication failed.
« HTTP 403 if the client is not authorized to revoke the token.

The following is an example response:

Token to be revoked:3eXnUZzkODNGb9D94Qk5XhiV4W4guOmuz56VAYoZiot4WNhIZ72D3
Revoking token...............
Response from revoke token request is:200

Successfully revoked token

Axway API Gateway 7.6.2 OAuth User Guide 40

3 API Gateway OAuth 2.0 authentication flows

Token information service flow

You can use the token information service to validate that an access token was issued by the API
Gateway. A request to the tokenInfo serviceisan HTTP GET request for information in a
specified OAuth 2.0 access token.

User Agent Authorization Server

Token Info Request

»

Check token wvalidity :l

Token Info response

<

The endpoint for the token information service is as follows:

https://HOST:8089/api/oauth/tokeninfo

Getting information about a token from the authorization server only requires a GET request to the
token info endpoint. For example:

GET /api/oauth/tokeninfo HTTP/1.1
Host:192.168.0.48:8080
access_ token=4eclEUX1IN60VIO0ZBbaDTI977SV3TIKqJI3ayOvs4gghGA4

This request includes the following parameter:

Parameter Description

access_ Required. Atoken that you want information about (for example:
token 4eclEUX1IN60VIO0ZBbaDTI977SV3TI9Kgqd3ayOvs4dgghGA4)

The following example uses this parameter:

https://apigateway/api/ocauth/tokeninfo?access token=4eclEUX1
N60oVIO0ZBbaDTI977SV3TOKqJ3ayOvs4gghGA4

Run the sample client

The following Jython sample client creates a token information request to the authorization server:

INSTALL DIR/samples/scripts/oauth/token info.py

Axway API Gateway 7.6.2 OAuth User Guide 41

3 API Gateway OAuth 2.0 authentication flows

To run the sample, open a shell prompt at INSTALL DIR/samples/scripts, and execute
the following command:

> run oauth/token info.py

This displays the following dialog:
4, Enter token value x|

o Get information about this token:

oK Cancel

When the authorization server receives the token information request, it first ensures the token isin
its cache (EhCache or Database), and then ensures the token is valid and has not expired.

The following is an example response:

Get token info for this token:BcYGJPOQSCrtbEclF0ag8zf60T9rCaMLiI1ldYjFLT5zhxz3x5ScrdN
Response from token info request 1is:200

Kok ok k ok Kk ok Kk koK Kk XKk x KX TOKEN TNFO RESPONSE* % o ko o sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Token audience received from authorization server:SampleConfidentialApp

Scopes user consented to:https://localhost:8090/auth/userinfo.email

Token expiry time:3566

User id :admin

KA KA AR AR A A R AR A A A AR A AR A AR AR A AR AR A AR A AR AR A AR A A A AR A A A A A Ak K

Response codes

The following HTTP status codes are returned:
« 200 if processing is successful
« 400 on failure

The response is sent back as a JSON message. For example:

"audience" :"SampleConfidentialApp",
"user id" :"admin",
"scope" :"https://localhost:8090/auth/userinfo.email",

"expires in" :2518

You can get additional information about the access token using message attributes. For more
details, see OAuth 2.0 message attributeson page 123.

Axway API Gateway 7.6.2 OAuth User Guide 42

Set up APl Gateway as an
OAuth 2.0 server

Note If you have installed API Manager, the OAuth server capabilities are already installed. You
can skip this section.

To set up API Gateway as an OAuth authorization server and OAuth resource server, you must deploy
the OAuth services as detailed in Deploy the OAuth serviceon page 121.

The API Gateway provides the following endpoints used to manage OAuth 2.0 client applications:

Description URL

Authorization Endpoint (REST API) https://HOST:8089/api/oauth/authorize
Token Endpoint (REST API) https://HOST:8089/api/oauth/token
Token Info Endpoint (REST API) https://HOST:8089/api/oauth/tokeninfo
Revoke Endpoint (REST API) https://HOST:8089/api/oauth/revoke
Client Application Registry (HTML https://HOST:8089

Interface)

Client Application Registry (REST API) https://HOST:8089/api/kps/ClientApplicationRegistry

In this table, HOST refers to the machine on which API Gateway is installed.

Note To enable these endpoints, you must first enable the OAuth listener port in the API
Gateway. For more details, see Enable OAuth endpointson page 43.

Enable OAuth endpoints

To enable the OAuth management endpoints on your API Gateway, perform the following steps:

1. Inthe Policy Studio tree, select Environment Configuration > Listeners > API Gateway
> OAuth 2.0 Services > Ports.

Right-click the OAuth 2.0 Interface in the panel on theright, and select Edit.
Select Enable Interface in the dialog.

Click the Deploy button in the toolbar.

vk wenN

Enter a description and click Finish.

Axway API Gateway 7.6.2 OAuth User Guide 43

4 Set up API Gateway as an OAuth 2.0 server

Note On Linux-based systems, such as Oracle Enterprise Linux, you must open the firewall to
allow external access to port 8089. If you need to change the port number, set the value
of theenv.PORT.OAUTH2 . SERVICES environment variable. For details on setting
external environment variables for API Gateway instances, see the API Gateway DevOps
Deployment Guide.

Axway API Gateway 7.6.2 OAuth User Guide 44

APl Gateway as an OAuth 2.0 5
authorization server

This section describes how to configure API Gateway as an OAuth authorization server. It describes
the following:

« Endpoints and policies used when API Gateway is acting as an OAuth authorization server — See
Authorization server policies and filters on page 45.

« How to manage OAuth access tokens and authorization codes — See Manage access tokens and
authorization codeson page 47.

Authorization server policies and filters

API Gateway provides the following sample policies that are exposed by the OAuth 2.0 Services
listener on the following paths:

Sample Exposed on path Description
policy

Authorization /api/ocauth/authorize Thispolicy isused in the authorization code

Request grant flow to obtain an authorization code. It
uses the Authorization Code Flow filter (see
Consume authorization requests on page 63).
This policy is also used in the implicit grant
flow to obtain an access token. It uses the
Create ID Token filter (see Create an OpenID
Connect ID token on page 116).

Axway API Gateway 7.6.2 OAuth User Guide 45

5 API Gateway as an OAuth 2.0 authorization server

Sample Exposed on path Description

policy

Access Token /api/oauth/token This policy is used to obtain an access token. It
Service calls another policy depending on the

grant type in the request:

« Forthe authorization code grant flow it
calls the Access Code policy, which uses
the Access token using Authorization
Code filter (see Get access token using
authorization code on page 52) and the
Create ID Token filter (see Create an
OpenID Connect ID token on page 116)

« Forthe resource owner password
credentials flow it calls the Resource
Owner Password Credentials policy, which
uses the Resource Owner Credentials
filter (see Get access token using resource
owner credentials on page 69)

« Forthe client credentials flow it calls the
Resource Owner Password Credentials
policy, which uses the Access Token
using Client Credentials filter (see Get
access token using client credentials on
page 54)

o Forthe JWT flow it calls the JWT policy,
which uses the Access Token using
JWT filter (see Get access token using
JWTon page 57)

« Forthe SAML flow it calls the SAML policy,
which uses the Access Token using
SAML Assertion filter (see Get access
token using SAML assertion on page 60)

« For the refresh token flow it calls the
Refresh policy, which uses the Refresh
Access Token filter (see Refresh access
token on page 67)

Revoke /api/oauth/revoke This policy is used to revoke an access token or
Token refresh token. It uses the Revoke a Token
filter (see Revoke token on page 72).

Axway API Gateway 7.6.2 OAuth User Guide 46

5 API Gateway as an OAuth 2.0 authorization server

Sample Exposed on path Description
policy

Access Token /api/oauth/tokeninfo This policy is used to request information

Info about an access token. It uses the Access
Token Information filter (see Get access
token information on page 51).

To view the paths exposed by the OAuth 2.0 Services listener, select Environment Configuration
> Listeners > API Gateway > OAuth 2.0 Services > Paths in the Policy Studio tree. In the
Resolvers window, click on the policy associated with a path to view the sample policy.
Alternatively, to view all of the sample policies, select Policies > OAuth 2.0 in the Policy Studio
tree.

Manage access tokens and authorization codes

API Gateway can store generated authorization codes and access tokens in its caches, in an Apache
Cassandra database, or in a relational database. The authorization server issues tokens to clients on
behalf of a resource owner. These tokens are used when authenticating subsequent API calls to the
resource server. These issued tokens must be persisted so that subsequent client requests to the
authorization server can be validated.

You can configure authorization code and access token stores under the Environment
Configuration > Libraries > OAuth2 Stores node in the Policy Studio tree. The authorization
server can cache authorization codes and access tokens depending on the OAuth flow. The steps for
adding an authorization code cache are similar to adding an access token cache.

The authorization server offers the following persistent storage options for access tokens and
authorization codes:

« API Gateway cache (default)
« Relational Database Management System (RDBMS)
« Apache Cassandra database

The following figure shows these options in Policy Studio:

Axway API Gateway 7.6.2 OAuth User Guide 47

5 API Gateway as an OAuth 2.0 authorization server

Name bAuth Access Token Store

Choose persistence type

Store in a cache
OAuth Access Token Cache

Store in a database

1000 B0

@) Store in Cassandra

Read Consistency Level ‘ONE > ‘

Write Consistency Level ‘ANY v‘

The Purge expired tokens every setting enables you to configure a time interval in seconds
after which a background process polls the database looking for expired access or refresh tokens or
authorization codes and purges them.

Store in a cache

To store access tokens or authorization codes in a cache, perform the following steps:

1.

3.

Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token
Store.

In the dialog, select Store in a cache, and select the browse button to display the cache
configuration dialog.

Add a new cache (for example, OAuth Access Token Cache).

For more details on API Gateway caches, see the API Gateway Policy Developer Guide.

Store in a relational database

To store access tokens or authorization codes in a relational database, perform the following steps:

1.

Create the supporting schema required for the storage of access tokens, refresh tokens, and
authorization codes using the SQL commandsin INSTALL
DIR\apigateway\system\conf\sql\DBMS TYPE\ocauth-server.sql where
DBMS_TYPE is the database management system being used. Schema are provided for
Microsoft SQL Server, MySQL, Oracle, and IBM DB2.

Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token
Store.

In the dialog, select Store in a database, and select the browse button to display a database
configuration dialog.

Axway API Gateway 7.6.2 OAuth User Guide 48

5 API Gateway as an OAuth 2.0 authorization server

4. Complete the database configuration details. The following example uses a MySQL instance
named oauth_db. For more details, see the API Gateway Policy Developer Guide.

Mame: lﬁ.CCESS Token DB Cache b |

URL: [jdhc:mysql:ﬂlocalhost|:33(}6foauth_d]

User Name: [TOO[l

Password:

@ Enter Password R]

) Wildcard Password

Store in Apache Cassandra

To store access tokens or authorization codes in Apache Cassandra, perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token
Store.
2. Select Store in Cassandra.

3. You can configure Read and Write consistency levels for the Cassandra database. These
control how up-to-date and synchronized a row of data is on all of its replicas. The default
Read setting of ONE means that the database returns a response from the closest replica. The
default Write setting of ANY means that a write must be written to at least one replica node.

For more details on Apache Cassandra, see Install an Apache Cassandra database in the API Gateway
Installation Guide.

Axway API Gateway 7.6.2 OAuth User Guide 49

OAuth 2.0 authorization server
filters

This section describes the filters you can use when API Gateway is acting as an OAuth authorization

server. These include:

Filter

Related flows

Consume authorization requests on page 63

« Authorization code grant (or web
server) flow on page 20

« Implicit grant (or user agent) flow on
page 26

Get access token using authorization code on
page 52

Authorization code grant (or web server)
flow on page 20

Get access token using resource owner
credentialson page 69

Resource owner password credentials flow
on page 30

Get access token using client credentialson
page 54

Client credentials grant flow on page 33

Get access token using JWT on page 57

JWT flow on page 35

Get access token using SAML assertion on page
60

SAML assertion

Get access token information on page 51

Token information service flow on page 41

Revoke token on page 72

Revoke token flow on page 38

Refresh access token on page 67

Refresh token

Axway API Gateway 7.6.2

OAuth User Guide 50

6 OAuth 2.0 authorization server filters

Get access token information

Overview

The OAuth 2.0 Access Token Information filter is used to return a JSON description of the
specified OAuth 2.0 access token. OAuth access tokens are used to grant access to specific resources
in an HTTP service for a specific period of time (for example, photos on a photo sharing website).
This enables users to grant third-party applications access to their resources without sharing all of
their data and access permissions.

An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes. For details on this OAuth flow, see Token information service flow on page 41.

Token settings

Configure the following fields on the Access Token Info Settings tab:
Token to verify can be found here

Click the browse button to select the location of the access token to verify (for example, in
the default OAuth Access Token Store). To add a store, right-click Access Token
Stores, and select Add Access Token Store. You can store tokensin a cache, in a
relational database, or in an Apache Cassandra database. For more details, see Manage
access tokens and authorization codeson page 47.

Where to get access token from

Select one of the following:

« In Query String/Form Body:
This is the default setting. Defaults to the access_token parameter.

« In a selector:
Defaultsto the $ {http.client.getCgiArgument ('access
token') } selector. For more details on API Gateway selectors, see the API
Gateway Policy Developer Guide.

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Axway API Gateway 7.6.2 OAuth User Guide 51

6 OAuth 2.0 authorization server filters

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Advanced settings

The settings on the Advanced tab include the following:

Return additional Access Token parameters:
Click Add to return additional access token parameters, and enter the Name and Value in the
dialog. For example, you could enter Department in Name, and the following selector in Value:

${accesstoken.getAdditionalInformation () .get ("Department")

Get access token using authorization code

Overview

The OAuth 2.0 Access Token using Authorization Code filter is used to get a new access token
using the authorization code. This supports the OAuth 2.0 authorization code grant or web server
authentication flow, which is used by applications that are hosted on a secure server. A critical
aspect of this flow is that the server must be able to protect the issued client application's secret. For
more details on this flow, see Authorization code grant (or web server) flow on page 20.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

Axway API Gateway 7.6.2 OAuth User Guide 52

6 OAuth 2.0 authorization server filters

Application validation settings

Configure the following fields on this tab:

Use this store to validate the Authorization Code:

Click the browse button to select the store in which to validate the authorization code (for example,
in the default Authz Code Store). To add a store, right-click Authorization Code Stores, and
select Add Authorization Code Store. You can store codes in a cache, in a relational database, or
in an Apache Cassandra database. For more details, see Manage access tokens and authorization
codeson page 47.

Find client application information from message:
Select one of the following:
« In Authorization Header:
This is the default setting.
« In Form Body:

The Client Id defaultsto client id, and Client Secret defaultsto client secret.

Access token settings

Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an
Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Refresh Token Details:
Select one of the following options:
. Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Axway API Gateway 7.6.2 OAuth User Guide 53

6 OAuth 2.0 authorization server filters

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaults to 4 6.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(forexample, Department and Engineering).

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before serviceA and serviceB that includes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Get access token using client credentials

Overview

The OAuth 2.0 Access Token using Client Credentials filter enables an OAuth client to request
an access token using only its client credentials. This supports the OAuth 2.0 client credentials flow,
which is used when the client application needs to directly access its own resources on the resource

Axway API Gateway 7.6.2 OAuth User Guide 54

6 OAuth 2.0 authorization server filters

server. Only the client application's credentials or public/private key pair are used in the flow. The
resource owner's credentials are not required. For more details on this OAuth flow, see Client
credentials grant flow on page 33.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

Application validation settings

Configure the following fields on this tab:
Find client application information from message:
Select one of the following:
« In Authorization Header:
This is the default setting.
« In Form Body:

The Client Id defaultsto c1ient id, and Client Secret defaultsto client secret.

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an
Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Axway API Gateway 7.6.2 OAuth User Guide 55

6 OAuth 2.0 authorization server filters

Refresh Token Details:
Select one of the following options:
. Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaults to 4 6.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(forexample, Department and Engineering).

Generate Token Scopes:

When requesting a token from the authorization server, you can specify a parameter for the OAuth
scopes that you wish to access. When scopes are sent in the request, you can select whether the
access token is generated only if the scopes in the request match all or any scopes registered for the
application. Alternatively, for extra flexibility, you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on
specified scopes:
« Get scopes from a registered application:

Select whether the scopes must match Any or All of the scopes registered for the application in
the Client Application Registry. Defaults to Any. If no scopes are sent in the request, the token
is generated with the scopes registered for the application.

« Get scopes by calling policy:

Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in
the Scopes approved for token are stored in the attribute field. Defaults to

scopes. for.token. The configured filter requires the scopes as a set of strings on the
message whiteboard.

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Axway API Gateway 7.6.2 OAuth User Guide 56

6 OAuth 2.0 authorization server filters

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Get access token using JWT

Overview

The OAuth 2.0 Access Token using JWT filter enables an OAuth client to request an access token
using only a JSON Web Token (JWT). This supports the OAuth 2.0 JWT flow, which is used when
the client application needs to directly access its own resources on the resource server. Only the
client JWT token is used in this flow; the resource owner's credentials are not required. For more
details on this OAuth flow, see JWT flow on page 35.

A JWT is a JSON-based security token encoding that enables identity and security information to be
shared across security domains. JWTs represent a set of claims as a JSON object. For more details,
see:

https://tools.ietf.org/html/rfc7519

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

Application validation settings

Configure the following fields on this tab:

Axway API Gateway 7.6.2 OAuth User Guide 57

https://tools.ietf.org/html/rfc7519

6 OAuth 2.0 authorization server filters

Audience (aud) must contain the following URI

Enter the JWT aud (intended audience). The JWT must contain an aud URI that identifies
the authorization server, or service provider domain, as an intended audience. The
authorization server must also verify that it is an intended audience for the JWT. Defaults to
http://apigateway/api/oauth/token.

Clock skew in seconds for JWT Claim

When creating the JWT, an OAuth client can set certain claims relating to time (for
example, iat, exp, or nbf). This field allows you to enter a number of seconds to allow
for clock skew when dealing with these claims.

If the iat claim is present, the OAuth token service asserts that the current time is greater than the
issued at time. If the exp claim is present, the OAuth token service asserts that the current time is
less than or equal to the expiry time (plus skew seconds if configured). If the nb f claim is present,
the OAuth token service asserts that the current time is greater than or equal to expiry time (minus
skew seconds if configured).

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an
Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page 47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.
Refresh Token Details:
Select one of the following options:

. Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Axway API Gateway 7.6.2 OAuth User Guide 58

6 OAuth 2.0 authorization server filters

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaults to 4 6.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(forexample, Department and Engineering).

Generate Token Scopes:

When requesting a token from the authorization server, you can specify a parameter for the OAuth
scopes that you wish to access. When scopes are sent in the request, you can select whether the
access token is generated only if the scopes in the request match all or any scopes registered for the
application. Alternatively, for extra flexibility, you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on
specified scopes:
« Get scopes from a registered application:

Select whether the scopes must match Any or All of the scopes registered for the application in
the Client Application Registry. Defaults to Any. If no scopes are sent in the request, the token
is generated with the scopes registered for the application.

« Get scopes by calling policy:

Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in
the Scopes approved for token are stored in the attribute field. Defaults to

scopes. for.token. The configured filter requires the scopes as a set of strings on the
message whiteboard.

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject. id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Axway API Gateway 7.6.2 OAuth User Guide 59

6 OAuth 2.0 authorization server filters

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before serviceA and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Get access token using SAML assertion

Overview

The OAuth 2.0 Access Token using SAML Assertion filter enables an OAuth client to request an
access token using a SAML assertion. This supports the OAuth 2.0 SAML flow, which is used when a
client wishes to utilize an existing trust relationship, expressed through the semantics of the SAML
assertion, without a direct user approval step at the authorization server. For more details on
supported OAuth flows, see API Gateway OAuth 2.0 authentication flowson page 19.

For more information on SAML, see the IETF draft document:
SAML 2.0 Profile for OAuth 2.0

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

SAML assertion validation settings

Configure the following fields on this tab:

Audience and Recipient within SAML Assertion must contain the following URI:
Enter a URI that must be contained in the SAML assertion's intended audience and recipient. The
SAML assertion must contain a URI that identifies the authorization server as an intended audience,
and that identifies the token endpoint URL of the authorization server as a recipient. Defaults to
http://apigateway/api/oauth/token.

Drift time (seconds):
Enter a drift time in seconds to allow for clock skew.

Call the following policy to verify SAML Assertion signature:
Click the browse button to select a policy to verify the SAML assertion signature.

Axway API Gateway 7.6.2 OAuth User Guide 60

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18

6 OAuth 2.0 authorization server filters

To guarantee the integrity of an XML signature in a message, the Access Token using SAML
Assertion filter should use the XML Signature Verification filter. For more information, see the
XML Signature Verification filter in the API Gateway Policy Developer Filter Reference. When API
Gateway receives the assertion, it converts the assertion into a W3C DOM document and stores this
value in a message attribute named ocauth. saml . doc. This message attribute is used by the
XML Signature Verification filter. A sample SAML bearer policy flow is available after you have
completed setting up OAuth (see Set up API Gateway as an OAuth 2.0 serveron page 43).

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an
Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page 47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaultsto 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Refresh Token Details:
Select one of the following options:
« Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaults to 46.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

Axway API Gateway 7.6.2 OAuth User Guide 61

6 OAuth 2.0 authorization server filters

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(forexample, Department and Engineering).

Generate Token Scopes:

When requesting a token from the authorization server, you can specify a parameter for the OAuth
scopes that you wish to access. When scopes are sent in the request, you can select whether the
access token is generated only if the scopes in the request match all or any scopes registered for the
application. Alternatively, for extra flexibility, you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on
specified scopes:

« Get scopes from a registered application:

Select whether the scopes must match Any or All of the scopes registered for the application in
the Client Application Registry. Defaults to Any. If no scopes are sent in the request, the token
is generated with the scopes registered for the application.

« Get scopes by calling policy:

Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in
the Scopes approved for token are stored in the attribute field. Defaults to

scopes. for.token. The configured filter requires the scopes as a set of strings on the
message whiteboard.

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject. id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a

Axway API Gateway 7.6.2 OAuth User Guide 62

6 OAuth 2.0 authorization server filters

composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Consume authorization requests

The OAuth 2.0 Authorization Code Flow filter is used to consume OAuth authorization requests.
This filter supports the OAuth 2.0 authorization code (web server) flow, which is used by
applications hosted on a secure server. A critical aspect of this flow is that the server must be able to
protect the issued client application's secret. The web server flow is suitable for clients capable of
interacting with the end user's user-agent (typically a web browser), and capable of receiving
incoming requests from the authorization server (acting as an HTTP server). The authorization code
flow is also known as the three-legged OAuth flow.

The OAuth 2.0 authorization code flow is as follows:

1. The web server redirects the user to the API Gateway acting as an authorization server to
authenticate and authorize the server to access data on their behalf.

2. After the user approves access, the web server receives a callback with an authorization code.

3. After obtaining the authorization code, the web server passes back the authorization code to
obtain an access token response.

4. After validating the authorization code, the API Gateway passes back a token response to the
web server.

5. After the token is granted, the web server accesses their data.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

The OAuth 2.0 Authorization Code Flow filter also supports the implicit grant (user agent) flow.
This is used by client applications (consumers) residing on the user's device (for example, in a
browser using JavaScript, or from a mobile device, or desktop application). These consumers
cannot keep the client secret confidential (application password or private key).

For more details on these OAuth flows, see Authorization code grant (or web server) flow on page
20 and Implicit grant (or user agent) flow on page 26.

Validation settings

The settings on the Validation/Templates tab enable you to specify login and authorization
forms to authenticate the resource owner.

Configure the following fields:

Axway API Gateway 7.6.2 OAuth User Guide 63

6 OAuth 2.0 authorization server filters

Login Form

Enter the full path to the HTML form that the resource owner can use to log in. Defaults to
the value

${environment.VDISTDIR}/samples/oauth/templates/login.html.
Authorization Form

Enter the full path to the HTML form that the resource owner can use to grant (allow or
deny) client application access to the resources. Defaults to the value
${environment.VDISTDIR}/samples/ocauth/templates/requestAcce
ss.html.

Selector

Enter a selector for the message attribute that contains the
authentication.subject.id of the current user if they have already been
authenticated. Defaults to the $ {authentication.subject.id} message
attribute. For more details on selectors, see the API Gateway Policy Developer Guide.

Note Previous versions of API Gateway enabled you to call a policy to authorize the resource
owner, and store the subject in a message attribute. This field is used to provide backward
compatibility with configurations using that option. If an authenticated user is not found
in the message, the filter automatically uses the internal flow and returns the specified
login form.

Skip Authorization

Select this option to skip the authorization check and automatically accept the valid scopes
in the request, or the scopes from the policy set in Get scopes by calling the policy on
the Access Token Details tab.

Authorization code settings
Configure the following fields on the Authz Code Details tab:

Authorization Code will be stored here:

Click the browse button to select where to cache the authorization code (for example, in the default
Authz Code Store). To add an authorization code store, right-click Authorization Code Stores,
and select Add Authorization Code Store. You can store codes in a cache, in a relational
database, or in an Apache Cassandra database. For more details, see Manage access tokens and
authorization codeson page 47.

Location of Access Code redirect page:

Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the
following:

${environment.VDISTDIR}/samples/oauth/templates/showAccessCode.html

VDISTDIR specifies the directory in which the API Gateway is installed.

Axway API Gateway 7.6.2 OAuth User Guide 64

6 OAuth 2.0 authorization server filters

Length:

Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):

Enter the number of seconds before the authorization code expires. Defaultsto 600 (10 minutes).
Additional parameters to store for this Authorization Code:

To store additional metadata with the authorization code, click Add, and enter the Name and
Value in the dialog (for example, Department and Engineering). When additional data is
set, itis then available in the Access Token using Authorization Code filter when the
authorization code is exchanged for an access token. You can also specify the fields in this table
using selectors. For more details on selectors, see the API Gateway Policy Developer Guide.

Note If you entered parameters for the authorization code and parameters for the access token,
the data will be merged. For example, if you set Name : John and
Department:Engineering asadditional parameters for the authorization code, and
set Department : HR as an additional parameter for the access token, the token is
created with Name : John and Department : HR.

Access token settings

Configure the following fields on the Access Token Details tab:
Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default
OAuth Access Token Store). To add an access token store, right-click Access Token
Stores, and select Add Access Token Store. You can store tokens in a cache, in a relational
database, or in an Apache Cassandra database. For more details, see Manage access tokens and
authorization codeson page 47.

Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).
Length:

Enter the number of characters in the access token. Defaults to 54.

Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Additional parameters to store for this Access Token:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(forexample, Department , Engineering).

Generate Token Scopes:

Axway API Gateway 7.6.2 OAuth User Guide 65

6 OAuth 2.0 authorization server filters

When requesting a token from the authorization server, you can specify a parameter for the OAuth
scopes that you wish to access. When scopes are sent in the request, you can select whether the
access token is generated only if the scopes in the request match all or any scopes registered for the
application. Alternatively, for extra flexibility, you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on
specified scopes:
. Get scopes from a registered application:

Select whether the scopes must match Any or All of the scopes registered for the application in
the Client Application Registry. Defaults to Any. If no scopes are sent in the request, the token
is generated with the scopes registered for the application.

« Get scopes by calling policy:

Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in
the Scopes approved for token are stored in the attribute field. Defaults to

scopes. for.token. The configured filter requires the scopes as a set of strings on the
message whiteboard.

Advanced settings

The settings on the Advanced tab include monitoring settings and cookie settings.

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before serviced and serviceB thatincludes both services. This

composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

The traffic monitoring options enable you to view message traffic in API Gateway Manager. For more
information on traffic monitoring, see the API Gateway Administrator Guide.

Record Outbound Transactions

Axway API Gateway 7.6.2 OAuth User Guide 66

6 OAuth 2.0 authorization server filters

Select whether to record outbound message traffic. You can use this setting to override the Record
Outbound Transactions setting in Server Settings > Monitoring > Traffic Monitor. This
setting is selected by default.

Resource Owner Cookie

Enter the name of the resource owner's cookie in the Cookie Name field. This is the cookie created
to manage the session between the authorization server and the resource owner.

Authorization Session Cookie

This cookie is needed to manage the session between the client application and the OAuth
authorization server. Enter the following details for the session cookie:

« Cookie Name — Name of the session cookie

« Domain — Domain value for the Set-Cookie header

« Path - Path value for the Set-Cookie header

« Expiresin — The length of time until the cookie expires

» Secure — Select the check box to add a secure flag to the Set-Cookie header

« HttpOnly — Select the check box to add a HttpOnly flag to the Set-Cookie header

Refresh access token

The OAuth 2.0 Refresh Access Token filter enables an OAuth client to get a new access token
using a refresh token. This filter supports the OAuth 2.0 refresh token flow. After the client
consumer has been authorized for access, they can use a refresh token to get a new access token
(session ID). This is only done after the consumer already has received an access token using either
the web server or user-agent flow. For more details on supported OAuth flows, see API Gateway
OAuth 2.0 authentication flows on page 19.

Application validation settings

Configure the following fields on this tab:
Find client application information from message:
Select one of the following:
« In Authorization Header:
This is the default setting.
« In Form Body:

The Client Id defaultsto c1ient id, and Client Secret defaultsto client secret.

Axway API Gateway 7.6.2 OAuth User Guide 67

6 OAuth 2.0 authorization server filters

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an
Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Refresh Token Details:
Select one of the following options:
. Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaultsto 46.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

« Preserve the existing refresh token:

Select this option to generate a new access token and preserve the existing refresh token. The
refresh token passed in the request is sent back with the access token response.

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(for example, Department and Engineering).

Axway API Gateway 7.6.2 OAuth User Guide 68

6 OAuth 2.0 authorization server filters

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for

example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Get access token using resource owner
credentials

Overview

The OAuth 2.0 Resource Owner Credentials filter is used to directly obtain an access token and
an optional refresh token. This supports the OAuth 2.0 resource owner password credentials flow,
which can be used as a replacement for an existing login when the consumer client already has the
user's credentials. For more details on this OAuth flow, see Resource owner password credentials
flow on page 30.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-
party applications access to their resources without sharing all of their data and access permissions.
An OAuth access token can be sent to the resource server to access the protected resources of the
resource owner (user). This token is a string that denotes a specific scope, lifetime, and other access
attributes.

Axway API Gateway 7.6.2 OAuth User Guide 69

6 OAuth 2.0 authorization server filters

Application validation settings

Configure the following fields on this tab:

Authenticate Resource Owner
Select one of the following:

« Authenticate credentials using this repository:
Select one of the following from the list:
o Simple Active Directory Repository
o Local User Store

« Call this policy:
Click the browse button to select a policy to authenticate the resource owner. You can use the
Policy will store subject in selector text box to specify where the subject is stored.
Defaults to the $ {authentication.subject.id} message attribute. For more details
on selectors, see the API Gateway Policy Developer Guide.

Find client application information from message:
Select one of the following:
« In Authorization Header:
This is the default setting.
« In Form Body:

The Client Id defaultsto client id, and Client Secret defaultsto client secret.

Access token settings

Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth
Access Token Store). To add an access token store, right-click Access Token Stores, and select
Add Access Token Store. You can store tokens in a cache, in a relational database, orin an

Apache Cassandra database. For more details, see Manage access tokens and authorization codeson
page47.

Access Token Expiry (in secs):

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:

Enter the number of characters in the access token. Defaults to 54.

Axway API Gateway 7.6.2 OAuth User Guide 70

6 OAuth 2.0 authorization server filters

Access Token Type:

Enter the access token type. This provides the client with information required to use the access
token to make a protected resource request. The client cannot use an access token if it does not
understand the token type. Defaults to Bearer.

Refresh Token Details:

Select one of the following options:

« Generate a new refresh token:

Select this option to generate a new access token and refresh token pair. The old refresh token
passed in the request is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry
(in secs) field, and enter the number of characters in the refresh token in the Refresh Token
Length field. The expiry defaultsto 43200 (12 hours), and the length defaults to 46.

. Do not generate a refresh token:

Select this option to generate a new access token only. The old refresh token passed in the
request is removed.

« Preserve the existing refresh token:

Select this option to generate a new access token and preserve the existing refresh token. The
refresh token passed in the request is sent back with the access token response.

Store additional meta data with the access token which can subsequently be
retrieved:

Click Add to store additional access token parameters, and enter the Name and Value in the dialog
(for example, Department and Engineering).

Generate Token Scopes:

When requesting a token from the authorization server, you can specify a parameter for the OAuth
scopes that you wish to access. When scopes are sent in the request, you can select whether the
access token is generated only if the scopes in the request match all or any scopes registered for the
application. Alternatively, for extra flexibility, you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on
specified scopes:

« Get scopes from a registered application:

Select whether the scopes must match Any or All of the scopes registered for the application in
the Client Application Registry. Defaults to Any. If no scopes are sent in the request, the token
is generated with the scopes registered for the application.

« Get scopes by calling policy:

Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in
the Scopes approved for token are stored in the attribute field. Defaults to

scopes. for. token. The configured filter requires the scopes as a set of strings on the
message whiteboard.

Axway API Gateway 7.6.2 OAuth User Guide 71

6 OAuth 2.0 authorization server filters

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

The traffic monitoring options enable you to view message traffic in API Gateway Manager. For more
information on traffic monitoring, see the API Gateway Administrator Guide.

Record Outbound Transactions

Select whether to record outbound message traffic. You can use this setting to override the Record
Outbound Transactions setting in Server Settings > Monitoring > Traffic Monitor. This
setting is selected by default.

Revoke token

Overview

The OAuth 2.0 Revoke a Token filter is used to revoke a specified OAuth 2.0 access or refresh
token. A revoke token request causes the removal of the client permissions associated with the
specified token used to access the user's protected resources. For more details on this OAuth flow,
see Revoke token flow on page 38.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific
period of time (for example, photos on a photo sharing website). This enables users to grant third-

Axway API Gateway 7.6.2 OAuth User Guide 72

6 OAuth 2.0 authorization server filters

party applications access to their resources without sharing all of their data and access permissions.
OAuth refresh tokens are tokens issued by the authorization server to the client that can be used to
obtain a new access token.

Revoke token settings

Configure the following fields on this tab:
Token to be revoked can be found here:

Click the browse button to select the cache to revoke the token from (for example, in the default
OAuth Access Token Store). To add an access token store, right-click Access Token Stores,
and select Add Access Token Store. You can store tokens in a cache, in a relational database, or
in an Apache Cassandra database. For more details, see Manage access tokens and authorization
codeson page 47.

Find client application information from message:
Select one of the following:
« In Authorization Header:
This is the default setting.
« In Form Body:

The Client Id defaultsto client id, and Client Secret defaultsto client secret.

Monitoring settings

The real-time monitoring options enable you to view service usage in API Gateway Manager. For
more information on real-time monitoring, see the API Gateway Administrator Guide.

Enable monitoring

Select this option to enable real-time monitoring. If this is enabled you can view service usage in the
web-based API Gateway Manager tool.

Which attribute is used to identify the client

Enter the message attribute to use to identify authenticated clients. The default is
authentication.subject.id, which stores the identifier of the authenticated user (for
example, the user name or user's X.509 Distinguished Name).

Composite Context

This setting enables you to select a service context as a composite context in which multiple service
contexts are monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message and sends it to serviceaA first, and then to
serviceB. Monitoring is performed separately for each service by default. However, you can set a
composite service context before servicel and serviceB thatincludes both services. This
composite service passes if both services complete successfully, and monitoring is also performed
on the composite service context.

Axway API Gateway 7.6.2 OAuth User Guide 73

APl Gateway as an OAuth 2.0 7
resource server

This section describes how to configure API Gateway as an OAuth resource server. It describes the
following:

« Endpoints and policies used when API Gateway is acting as an OAuth resource server — See
Resource server policies and filters on page 74.

« How to use the Client Application Registry web interface to register and manage client
applications — See Register and manage OAuth client applications on page 76.

« How to manage the OAuth scopes that a client application can access — See Scopes in API
Gateway on page 77.

Resource server policies and filters

API Gateway provides a sample Resource Service policy that is exposed by the OAuth 2.0 Services
listener on the path /api/oauth/protected. The Resource Service sample policy contains a
Validate Access Token filter (see Validate access token on page 82), which is responsible for
validating the access token.

SERvs] € Validate Access Token in Message

r

] [| Set Congrats Message

r

IMI - Reflect

When an HTTP request for the protected resource comes into the listener, this request contains an
Authorization Header containing the access token string. The Validate Access Token filter takes
the access token string and looks it up in a token store. The token information returned from the
store contains the scopes that were issued for this token, its expiry time, the ID of the resource
owner, and the Client ID of the application for which it was issued. It also contains any additional
information specified at token generation.

The filter checks that the token has not expired and that the token scopes match the scopes
required. If the token has expired or the scopes do not match, the filter will fail. Otherwise, it will
pass and the request can continue to be processed.

Axway API Gateway 7.6.2 OAuth User Guide 74

7 API Gateway as an OAuth 2.0 resource server

The Validate Access Token filter does not take into account the access rights of the resource
owner or the HTTP verb used, only that the token has the required access (scopes). These
considerations are intentionally left open for policy developers to manage as per their application's
requirements. For example, a successfully passing filter will set the
authentication.subject.id to that of the resource owner who originally authorized the
token, and a subsequent filter could decide if the resource owner has individual rights to the
resource, or the resource can be modified to represent a user specific resource.

Scopes defined in the filter can use selectors. This can be useful to tie the validation of a token to a
request specific attribute, such as the HTTP verb. A filter scope defined as
${http.request.verb} would ensure that the access token must have a scope called POST
when the request is a POST, GET when the request is a GET, and so on. However, this type of
configuration must be considered when defining the client application in the Client Application
Registry, as to be able to request a token with scopes like POST and GET those scopes must be
available to the application. For more information, see Register and manage OAuth client
applications on page 76.

Create custom OAuth protected resources

Protected resources are created in Policy Studio by simply adding a Validate Access Token filter
to a policy that is reachable through a path in a listener. The following steps show an example of
creating a suitable policy:

1. Createapolicy called Protected Resource. Inthe Policy Studio tree, right click Policies
and select Add Policy.

2. Drag and drop a Validate Access Token filter from the OAuth 2.0 filter category onto the
policy canvas.

3. To configure the filter select the OAuth access token store against which the token value will be
checked, and specify the scopes that must be associated with the token for the filter to pass.
The following example specifies scope .WRITE and ${http.request.verb}asthe
scopes.

You can also change the expected location of the token string. This is typically in the

Authorization Header, but nonstandard locations are also supported. For more information on
the configuration options, see Validate access token on page 82.

Axway API Gateway 7.6.2 OAuth User Guide 75

7 API Gateway as an OAuth 2.0 resource server

Validate Access Token lL“J

Validate Access Token is contained in persistent storage

Name: Validate Access Token

Verify access token is in cache OAuth Access Token Store B

Location of Access Token

@) In Autharization Header with prefix:

() In query-string/form body field named:

() In Attribute:

Validate Scopes
Scopes associated with the token must match of the following:

Scope

S{http.request.verb}
scope.WRITE

< Back [Next > I l Finish I l Cancel I

After you have created the policy, you can expose it on the existing path,
/api/oauth/protected, oryou can create a new path. For more information on configuring
relative paths, see the API Gateway Policy Developer Guide.

Register and manage OAuth client applications

Note If you have installed API Manager, you can register and manage client applications in the
API Manager web interface instead of the Client Application Registry. For more information,
see Register and manage client applications in API Manageron page 87.

Client applications that send OAuth requests to the API Gateway’s authorization server must be
registered with the authorization server. This topic describes how to register and manage client
applications (and the scopes they can access) using the Client Application Registry web-based
interface. It includes the following sections:

Manage client applications in the Client Application Registry 76
Scopesin APL GateWay L 77
Client Application Registry storage and settings 79

Manage client applications in the Client
Application Registry

API Gateway provides the Client Application Registry web-based interface for managing client
applications. API Gateway also provides the Client Application Registry REST API to enable you to
manage client applications on the command line.

Axway API Gateway 7.6.2 OAuth User Guide 76

7 API Gateway as an OAuth 2.0 resource server

You can access the Client Application Registry web interface at the following URL:

https://localhost:8089

Note You must perform the steps described in Set up API Gateway as an OAuth 2.0 serveron
page 43 (for example, enable the OAuth endpoints and import or migrate client
applications) before you can manage client applications using the Client Application
Registry.

Log in using the Client Application Registry user name and password.
To register a new client application, click the New application button.

To edit an existing client application, click the application name in the list of applications. You can
add API keys, OAuth credentials, and OAuth scopes for the application. For more information on
OAuth scopes, see Manage OAuth scopes in the Client Application Registry on page 78.

[E————Y

Client Registry

n, Sample Confidential App
esa

ved automatically.

Editing application

GENERAL

Application name®: | Sample Confidential App

9557C70.7201-4e31-81-cdd977812d7d

Pl Manager Adm

on: 17 April 2013, 08:45

APIKEYS

New API key Remove

cesonssesaaz fszbsesaadencobae | showsecret | (G 25 September 2012, 1049

OAUTH CREDENTIALS

New client ID Remove

sampleConfidentialapp showsecret (]

OAUTH SCOPES

Scopes in APl Gateway

An OAuth scope is a text string used to control access to protected resources. The resource that the
scope is associated with determines the meaning of the scope. For example, if a customer
details scope is associated with a particular resource, and a client application is associated with
the customer details scope, the client application will have access to that resource. Client
applications and resources can have multiple OAuth scopes.

For example, in the following overview diagram:

Axway API Gateway 7.6.2 OAuth User Guide 77

7 API Gateway as an OAuth 2.0 resource server

« Client application A can accessthe customer details scope.
« Client application B can access the customer details and photos scopes.

« Client application C can access the photos scope only.

Customer Details

Client Application A %
)
' " E
| |

Client Application B ._."
——— »* —-—

APP c
AP| Gatewa e
Y LN
Client Application C
E
[|

e I =
Photos

In API Gateway, a global OAuth scopes model is used:

« Scopes are defined in policies.

« Therecan be 1...N listeners routing to 1...N policies. There is no explicit URL to scope mapping
defined, instead it is implicitly determined by the listener to policy routing.

« Scopes can be dynamically defined and assigned to registered client applications in the Client
Application Registry.

« Supports default scopes, which are scopes assigned if no scopes are requested in the
authorization request.

Note This scopes model is also supported in API Manager. For more details, see Scopes in API
Manageron page 85.

Manage OAuth scopes in the Client Application
Registry

You can configure the scopes that a client application can access in the Client Application Registry
web interface. When editing the client application, select the Authentication tab. In the OAUTH
SCOPES section you can specify scopes as free-form text or select a scope from a list of known
configured scopes. You can also select a scope as a default scope for the client application. Default

Axway API Gateway 7.6.2 OAuth User Guide 78

7 API Gateway as an OAuth 2.0 resource server

scopes are used when an authorization or token request does not contain scopes. The full list of
scopes (default and non-default) represents the list of scopes that can be included in an
authorization or token request.

Tip Ingeneral, good OAuth design involves a finite number of OAuth scopes. You should
decide on the set of scopes to be used in your system instead of creating too many scopes
later on.

The following figure shows the default scopes for a client application:
OAUTH SCOPES

Add scope = Remove

SCOPE DEFAULT

resource.READ m
resource.WRITE m

Note You can specify any text string for an OAuth scope (for example, customer details
orreadonly).

When an authorization code or access token request is received from a client application, the API
Gateway OAuth access token filters check that the scopes in the message match the scopes
configured for the client application. If no scopes are provided in the message, the filter creates an
access token for the scopes that are configured as default. The scope for which the access token
was created is checked against the list of available scopes in the Client Application Registry web
interface. This list is generated from the scopes defined in the Validate Access Token filter in the
server configuration. For more details on this filter, see Validate access token on page 82.

Note You can also specify OAuth scopes using selectors (for example, use
${http.request.verb} to map HTTP GET and PUT requests). However, the Client
Application Registry web interface does not display selectorized scopes in the list of
available scopes. This is because selectorized scopes in the Validate Access Token filter
cannot be evaluated at registration time.

The administrator must therefore find out about any selectorized scopes to be applied to
resources at runtime. If a scope must be configured using a selector, the administrator
must find out exactly which selector to specify in the scope. For more details on selectors,
see the API Gateway Policy Developer Guide.

Client Application Registry storage and settings

By default, OAuth client application data is stored in a Key Property Store (KPS) backed by an
Apache Cassandra database. For more details on KPS, see the API Gateway Key Property Store User
Guide. For more details on Apache Cassandra, see Install an Apache Cassandra database in the API
Gateway Installation Guide.

Axway API Gateway 7.6.2 OAuth User Guide 79

7 API Gateway as an OAuth 2.0 resource server

Relational database-backed Client Application Registry

The Client Application Registry KPS can also be backed by a relational database such as Oracle,
MySQL, IBM DB2, or Microsoft SQL Server. For more information on KPS and database storage, see
the API Gateway Key Property Store User Guide.

OAuth relational database schemas

The OAuth relational database schemas can be found in the following directory in your installation:

INSTALL DIR/apigateway/system/conf/sql/

Data security

If you have set an encryption passphrase for API Gateway, the OAuth secret and API secret are
encrypted in the Client Application Registry.

If you change the encryption passphrase at any point, you must re-encrypt the data in the Client
Application Registry or you will not be able to connect to the Client Application Registry web-based
interface.

To re-encrypt the data, use the kpsadmin tool, and select the option to Re-encrypt All.
This re-encrypts all data in all tables in a collection. You are prompted for the old passphrase
(needed to decrypt the data). The data is then re-encrypted with the current API Gateway
passphrase. Repeat this process for each KPS collection.

For more information on the kpsadmin tool, see the API Gateway Key Property Store User Guide.

Client Application Registry authentication settings

You can configure the Client Application Registry authentication settings in Policy Studio. Click
Environment Configuration > Server Settings In the Policy Studio tree and select Security
> Client Application Registry.

Authentication settings
You can configure the following fields in the Authentication Settings section:
Circuit for authentication:

Select a policy to use to authenticate the user. If you have deployed the OAuth server components
(see Deploy the OAuth service on page 121), asample policy Client Registry AuthN-
Auth? is provided. This policy authenticates the user credentials against the local user store and
sets two required attributes on the message whiteboard, which are used to complete authentication
and authorization process.

Subject:

Axway API Gateway 7.6.2 OAuth User Guide 80

7 API Gateway as an OAuth 2.0 resource server

Enter a selector for the message attribute that contains the user ID (for example,
${authentication.subject.id}).

Role:

Enter a selector for the message attribute that contains the user role (for example,
${authentication.subject.role}).

Email:

Enter a selector for the message attribute that contains the user email (for example,
${user.email}).

Cookie settings

You can configure the following fields in the Cookie Settings section:
Cookie Name:

Name of the session cookie. Defaults to CLIENTREGISTRYCOOKIE.
Cookie Path:

Path value for the Set-Cookie header. Defaults to /.

Cookie Domain:

Domain value for the Set-Cookie header.

Cookie Max Age:

The length of time until the cookie expires. Defaults to 1 day.

Secure:

Select the check box to add a secure flag to the Set-Cookie header.
HttpOnly:

Select the check box to add a HttpOnly flag to the Set-Cookie header.

Axway API Gateway 7.6.2 OAuth User Guide 81

OAuth 2.0 resource server
filters

This section describes the filters you can use when API Gateway is acting as an OAuth resource
server. These include:

Filter Description

Validate access token on page Validate an access token and allow access to a protected
82 resource.

Validate access token

Overview

The OAuth 2.0 Validate Access Token filter is used to validate a specified access token contained
in persistent storage. OAuth access tokens are used to grant access to specific resources in an HTTP
service for a specific period of time (for example, photos on a photo sharing website). This enables
users to grant third-party applications access to their resources without sharing all of their data and
access permissions.

For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flowson
page 19.

General settings

Configure the following fields:
Name:

Enter a suitable name for this filter.
Verify access token is in cache:

Click the browse button to select the cache in which to verify the access token (for example, in the
default OAuth Access Token Store). To add an access token store, right-click Access Token
Stores, and select Add Access Token Store. You can store tokens in a cache, in a relational
database, or in an Apache Cassandra database. For more details, see Manage access tokens and
authorization codes on page 47.

Axway API Gateway 7.6.2 OAuth User Guide 82

8 OAuth 2.0 resource server filters

Location of access token:
Select one of the following:

o In Authorization Header with prefix:
The access token is in the Authorization header with the selected prefix. Defaults to Bearer.
This is the default option.

« In query string/form body field named:
The access token is in the HTTP query string with the name specified in the text box.

« In Attribute:
The access token is in the API Gateway message attribute specified in the text box.

Validate Scopes:

Select whether scopes match Any or All of the configured scopes in the table, and click Add to add
an OAuth scope. The default scopes are found in $ {http.request.uri}.

For example, the default scopes used in the OAuth demos are resource . READ and
resource.WRITE.

Response codes

The Validate Access Token filter performs a number of checks to determine if the token is valid. If
any of the checks fail, the response can be examined to determine the reason for the failure.

The filter performs the following sequence of steps to determine if the token is valid:

1. Locate the token in the incoming request. The token can be in the Authorization header, in a
query string, or in a message attribute.

« If thefilter is configured to find the token in a message attribute and no token is found,
the following response is sent:

HTTP/1.1 400 Bad Request
WWW-Authenticate:Bearer realm="DefaultRealm",
error="invalid request",

error_description="Unable to find token in the message."

If the filter is configured to find the token in the Authorization Bearer header and no
token is found (or the Authorization header is not found or does not contain the Bearer
header), the following response is sent:

HTTP/1.1 401 Unauthorized

WWW-Authenticate:Bearer realm="DefaultRealm"

2. Ifthetoken isfound in the incoming request, next verify that the token can be found in the API
Gateway persistent storage mechanism. If it cannot be found, the following response is sent:

HTTP/1.1 401 Unauthorized

Axway API Gateway 7.6.2 OAuth User Guide 83

8 OAuth 2.0 resource server filters

3.

4.

WWW-Authenticate:Bearer realm="DefaultRealm",

error="invalid token",

error_description="Unable to find the access token in persistent storage."

If the token is found in persistent storage, next verify the authenticity of the token. This
includes checking the token's expiry, client identifier, and required scopes.

« Check if the token has expired. An expired token must not be able to allow access to a
resource. If the token has expired, the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate:Bearer realm="DefaultRealm",
error="invalid token",

error description="The access token expired."

« Check theclient ID in the token and ensure it is the same as a client ID stored in the API

Gateway client registry. (To use OAuth you need a client application and the client
application must have OAuth credentials.) Check that the application is still enabled. If
either checks fail, the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate:Bearer realm="DefaultRealm",
error="invalid token",

error description="The client app was not found or is disabled."

Validate the scopes in the token against the scopes configured in Policy Studio. In
Policy Studio you can specify that scopes should match Any or All of the scopes listed
in the table. If All is selected, the token scopes must match all of the scopes listed in
Policy Studio. If Any is selected, the token scopes intersection with the scopes listed in

Policy Studio must not be empty. If the scopes do not match, the following response is
sent:

HTTP/1.1 403 Forbidden
WWW-Authenticate:Bearer realm="DefaultRealm",
error="insufficient scope",

error description="scope (s) associated with access token are not valid to

access this resource.",

scope="Scopes must match Any of these scopes:resource.WRITE"

The message includes a further string listing the scopes required to access the resource.

If the token is authentic, allow access to the resource.

Axway API Gateway 7.6.2 OAuth User Guide 84

APl Manager as an OAuth 2.0 9
resource server

This section describes how to use API Manager as an OAuth resource server. It describes the
following:

« How to protect APIs registered in API Manager with OAuth — See Protect APIs with OAuth on
page 85.
« Scopes in API Manager — See Scopes in API Manageron page 85.

« OAuth authorization management — See Authorization management in API Manager on page
86.

« How to use the API Manager web interface to register and manage client applications — See
Register and manage client applications in API Manager on page 87.

For more information on API Manager, see the API Manager User Guide.

Protect APIs with OAuth

API Manager provides a web-based interface that enables API owners to register existing back-end
REST APIs, apply standard policies, and virtualize them on API Gateway as public front-end APIs.
When you virtualize a REST API, you can configure it with security devices, which provide prebuilt
authentication and authorization mechanisms for the REST APIL. This enables you to control the
authentication and authorization mechanisms that are supported for the APL

The security devices supported for the inbound request (between the client and API Gateway)
include OAuth and OAuth (External). This enables you to protect the virtualized API using OAuth
where the OAuth provider is API Gateway, or using OAuth with an external OAuth provider.

In addition to the prebuilt OAuth security devices, you can also create custom security profiles with
multiple security devices, which can be applied as per-method overrides. This enables you to control
the authentication and authorization mechanisms that are supported for the API not just at the API
level, but also at the API method level.

For more information on virtualizing APIs in API Manager and protecting those APIs with OAuth, see
the API Manager User Guide.

Scopes in APl Manager

API Manager supports an explicit API model with scopes assigned to APIs during API registration.

Axway API Gateway 7.6.2 OAuth User Guide 85

9 API Manager as an OAuth 2.0 resource server

When a client application is authorized (granted access) to use an API, then all the API's scopes are
associated with (available to) that application. When the client application makes an authorization
request, it includes the scopes it is requesting in the request. In the authorization code flow, these
scopes are displayed to the resource owner and the resource owner can select which scopes are
granted to the client application.

Enable global scopes in APlI Manager

You can also enable OAuth scopes at the level of the client application by selecting the Enable
OAuth scopes per application setting in the API Manager web interface. Select the Settings >
API Manager settings tab, and under GENERAL SETTINGS switch the Enable OAuth scopes
per application setting to ON. This allows API administrators to create application-level scopes to
permit access to OAuth resources that are not covered by API-level scopes. This setting can be used
if you are using the API Gateway global scopes model. For more information, see Scopes in API
Gateway on page 77.

When you select the Enable OAuth scopes per application setting in API Manager, you can
configure the scopes that a client application can access in the API Manager web interface. When
editing a client application, select the Authentication tab. In the OAUTH SCOPES section you can
specify scopes as free-form text or select a scope from a list of known configured scopes. You can
also select a scope as a default scope for the client application.

For more information on API Manager settings, see the API Manager User Guide.

Authorization management in APl Manager

During the OAuth authorization process, the OAuth authorization server asks a resource owner to
authorize access to a given set of scopes requested by the client application. If the resource owner
accepts the authorization request, the client application can interact with the OAuth authorization
server to obtain an access token and subsequently access the resource owner's protected resources.

OAuth authorizations are stored in the Authorizations table in the OAuth KPS collection. Thisis a
hidden KPS collection that is not visible in Policy Studio by default. For more information on
viewing hidden KPS collections in Policy Studio, see the API Gateway Key Property Store User
Guide.

There is only one authorization record per client application/resource owner. When a client
application requests authorization and a record already exists for the client application/resource
owner, the resource owner is only asked to grant access to any additional scopes requested, and not
to the scopes previously authorized. If the resource owner grants access, the authorization record is
updated to include the additional scopes.

There are several ways to view the OAuth authorizations:

« API Manager — See View and revoke OAuth authorizations in API Manageron page 87

o REST API- For more information, see the API Manager REST API available from Axway Support
at https://support.axway.com

« kpsadmin tool — For more information, see the API Gateway Key Property Store User Guide

Axway API Gateway 7.6.2 OAuth User Guide 86

https://support.axway.com/htmldoc/1433378
https://support.axway.com/

9 API Manager as an OAuth 2.0 resource server

View and revoke OAuth authorizations in API
Manager

API Manager enables you to view and revoke OAuth authorizations that have been granted to client
applications by resource owners. This enables you to manage all client application authorizations to
access OAuth-protected APIs. This also means that resource owners do not need to reauthorize
application requests.

To view the OAuth authorizations in API Manager, select Policy Management > OAuth

Authorizations.

Managing authorizations
Use the paging arrows to navigate your list of authorizations.

£) Refresh
B Applications Owner Scopes
Client App sampleuser openid resource. WRITE

For each client application, the following details are displayed:

« Application — The name of the client application
« Owner — The resource owner that granted the authorization
« Scopes — The scopes that the resource owner is allowing this client application to access

To revoke an authorization, select the check box next to the authorization, and select Manage
selected > Delete selected item.

When client applications are authorized to access OAuth-protected APIs, they are issued with an
access token and optionally a refresh token. Revoking an OAuth authorization means that the access
and refresh tokens that the client application has are no longer valid.

For more details, see the API Manager User Guide.

Register and manage client applications in API
Manager

In the API Manager web-based interface you can use the Client Registry > Applications tab to
create and edit client applications and give them access to the APIs virtualized in API Manager.
When an application is created, you can set authentication, quota, and sharing settings on the
appropriate tab.

Note The API administrator must first specify the APIs that an organization is allowed to access
before any of its client applications can have access to them. In API Manager, you can only
add APIs to an application when they have been added to the organization.

Axway API Gateway 7.6.2 OAuth User Guide 87

9 API Manager as an OAuth 2.0 resource server

To register a new client application, click the New application button.

To edit an existing client application, click the application name in the list of applications. You can
edit the following:

« On the Application tab, you can add APIs that the client application can access in the API
ACCESS section.

« On the Authentication tab, you can add API keys, OAuth credentials, and external OAuth
credentials for the application.

Note You can also add OAuth scopes at the client application level if you have enabled
global scopes as described in Enable global scopes in API Manager on page 86.

« On the Quota tab, you can override the application-default quota and specify application-
specific quota rules.

« On the Sharing tab, you can manage access to the application for specified users.

Editing application, Acme Test App

Changes to the application are saved automatically.

1 Back fil Delete Editing application

Authentication Sharing

General

*Application name: | e Test app

Organization: APl Development
enabled: (@D

ID: 5a5cf4a2-befe-4187-80ba-2c6898bbf0a2
Created by: Joe Developer
Created on: 31 March 2017, 10:37

Current state: Approved

For more information on registering and managing client applications in API Manager, see the API
Manager User Guide.

Axway API Gateway 7.6.2 OAuth User Guide 88

Set up API Gateway OAuth 1 O
client

API Gateway includes a number of sample client applications and a web-based client demo. You can
deploy the client demo using Policy Studio, and you can import the sample client applications
manually. You can also migrate your existing client applications.

« For more information on deploying the client demo, see Deploy the OAuth client demo on page
122.

« For more information on importing the sample client applications manually, see Import sample
client applications on page 89.

Import sample client applications

The API Gateway ships with a number of preregistered sample client applications. For example, the
default sample client applications include the following:

Client ID Client secret

SampleConfidentialApp 6808d4b6-ef09-4b0d-8£28-3b05da9c48ec

SamplePublicApp 3b001542-e348-443b-9ca2-2£38bd3£f3e84

Note The sample client applications are for demonstration purposes only and should be removed
before moving the authorization server into production.

To import the sample client applications into the Client Application Registry, perform the following
steps:

1. Access the Client Application Registry web interface at the following URL:

https://localhost:8089

2. Enter the Client Application Registry user name and password.
3. Click the Import button at the top right of the window.

4. Select the following sample file in the dialog:

INSTALL DIR/apigateway/samples/scripts/oauth/sampleapps.dat

5. You can also enter a Decryption Secret in the dialog. However, the sampleapps.dat file
isin plain text format, and does not require a password.

Axway API Gateway 7.6.2 OAuth User Guide 89

10 Set up API Gateway OAuth client

6. Click OK to import the sample applications. The following figure shows these applications

imported into the Client Application Registry:

Managing applications

Use the paging arrows to navigate your list of applications.
£ Refresh Import Export all

New application
W Name Descripfion

Client App Client Application, registered for use in the Client Demo

sample Confidential App Sample Confidential Application

Sample Public App Sample Public Application

Alternatively, you can use the following script to import the sample client application data without
using the Client Application Registry web interface:

INSTALL DIR/apigateway/samples/scripts/oauth/importSampleData.py

Edit this script to configure your user credentials and file location.

Axway API Gateway 7.6.2 OAuth User Guide 90

APl Gateway as an OAuth 1 1
2.0 client

This section describes how to configure API Gateway as an OAuth client. It describes the following:

« OAuth client features of API Gateway and a sample OAuth client workflow — See Introduction to
API Gateway OAuth client on page 91.

« Endpoints and policies used when API Gateway is acting as an OAuth client — See Client policies
and filterson page 94.

« How to configure OAuth client application credentials in API Gateway — See Configure OAuth
client application credentials on page 95.

« How to manage OAuth client access tokens — See Manage client access tokenson page 101.

« How to set the Bearer token as the authorization header — SeeSet Bearer token in authorization
headeron page 109 .

Introduction to APl Gateway OAuth client

OAuth is an open standard for authorization that enables client applications to access server
resources on behalf of a specific resource owner. OAuth also enables resource owners (end users) to
authorize limited third-party access to their server resources without sharing their credentials.

API Gateway can act as the client application in an OAuth 2.0 scenario, and as such API Gateway can
instigate the authorization process, handle redirects, and request OAuth tokens from an
authorization server. Received tokens are stored securely and subsequently used to access protected
resources on behalf of users. This provides the following benefits:

« The OAuth client burden is moved to API Gateway
« The resource owner's credentials are never shared with the client application
« The access token is never shared with the resource owner's user agent

Note This document assumes that you are familiar with both the terms and concepts described
in the OAuth 2.0 Authorization Framework and the OAuth server features of API Gateway
(for more information, see Introduction to API Gateway OAuth 2.0 serveron page 15).

Axway API Gateway 7.6.2 OAuth User Guide 91

http://tools.ietf.org/html/rfc6749

11 API Gateway as an OAuth 2.0 client

API Gateway OAuth client features

API Gateway provides the following features to support OAuth 2.0 client functionality:
« Provider profiles for defining OAuth service providers and the applications registered with them.

« Asetof preconfigured sample provider profiles for use with Axway, Google, and Salesforce
OAuth services.

« Storage of received tokens.
« Support for the following OAuth flows:
o Authorization code grant
o Resource owner password credentials
o Client credentials grant
o JWT
o SAML assertion

Note Theimplicit grant type is not supported as it is designed to support client
applications that do not have a secure server component, and as such it is not
applicable for API Gateway acting as an OAuth client.

The following diagram shows the role of API Gateway as an OAuth 2.0 client application accessing
OAuth services provided by Axway API Gateway, Google, and Salesforce:

@ -, Accesses Protected

Applications

“.._ Resources)
‘l‘_ !
A i
H Authorization Server ! Data
i Resource Server l
i Issues Access ™.,k . i
: Tokens Go (‘.':Ik '
i Authorized Access to |
Accesses i Salesforce Protected Remurgﬁ)
Services _ P) Application
i Authenticates P \ Servers
i Grants Access |
i API !
. : Service Bus
E F E]
i Cloud-Based |
é i Services

User e —— ;
(Resource Owner)

The OAuth client capability of API Gateway supports the following scenario:

« Aninternal application needs to invoke a back-end API X, for example offered by a cloud
application. API X is protected by OAuth using the provider’s implementation.

Axway API Gateway 7.6.2 OAuth User Guide 92

11 API Gateway as an OAuth 2.0 client

« Theinternal application does not invoke API X directly.

« Instead API X is proxied by API Gateway as APIY, and exposed into the enterprise for internal
applications to use. A policy implements API Y, including all the OAuth client capability to
invoke API X.

« Theinternal application invokes APIY using an internal authentication mechanism (for
example, HTTP basic). The policy authenticates the internal application and then invokes API X
using OAuth.

You can test the OAuth client capabilities of API Gateway using a web-based OAuth client demo. For
more information, see API Gateway OAuth client demo on page 119.

Contact Axway Support for more information on integrating your application with Google or
Salesforce APIs using API Gateway and OAuth 2.0.

OAuth 2.0 example client workflow

This example is similar to the OAuth server example workflow on page 16, but in this context API
Gateway acts as a client, and the service provider is Google.

Assume that you, as a resource owner, are using a service that wants to access your Google calendar
(a protected resource). The service is defined on API Gateway (API Gateway is an OAuth client). You
do not want to reveal your Google credentials to API Gateway. This problem can be solved using the
example OAuth 2.0 web server flow shown in the following diagram:

Resource Server

Client Application %
(5 Access data 5
______________________________) E
O
E .
[|
e Y

~
N
~
~

.. Issue access token

©

Access service

Delegates
authentication
authorization

[}
[}
1
1
[}
[}
1
1
[}
[}
1
1
[}
]
1
~
~
~

B ittt <

@ Grant access

Resource Owner

(User) Authorization Server

Axway API Gateway 7.6.2 OAuth User Guide 93

11 API Gateway as an OAuth 2.0 client

Out of band, API Gateway preregisters with Google and obtains a client ID and secret. API Gateway
also registers a redirect URL to receive the authorization code from Google when you, as resource
owner, authorize access to your Google calendar. The application has also requested access to an
APInamed /google/calendar, which has an OAuth scope of calendar.

The credentials received from Google are added to the Google client credential profile using Policy
Studio (for more information, see Add application credentials on page 96). The provider profile is
also configured with the authorization endpoint and token endpoint of the Google authorization
server (for more information, see Add OAuth provideron page 100). The redirect URL is also created
as an HTTP listener on API Gateway, with a filter for receiving the authorization code (for more
information, see Create a callback URL listener on page 100).

The steps in the diagram are described as follows:

1. Using a browser or mobile phone, you access a service defined on API Gateway, which needs to
access your Google calendar on your behalf. The client application initiates the authorization
flow by redirecting your browser to the authorization endpoint defined in the Google OAuth
provider profile.

2. After following the redirect, you log in to your Google account and authorize the application for
the requested scope.

Note You have not shared your Google user name and password with the API Gateway
application. At this point, you, as the resource owner, are no longer involved in
the process.

3. The authorization server then redirects your browser to the callback URL on API Gateway, along
with an authorization code.

4. The API Gateway client application gets the authorization code, and must exchange this short-
lived code for an access token. The client application sends another request to the
authorization server, this time to the token endpoint, saying it has a code that proves the user
has authorized it to access their calendar, and now issues the access token to be sent on to the
API (resource server). The authorization server verifies the authorization code and returns an
access token.

5. The client application sends the access token to the API (resource server), and receives the
calendar information as requested.

Client policies and filters

API Gateway provides a number of sample policies for when API Gateway is acting as an OAuth
client. Sample policies are provided for the following OAuth providers:

« API Gateway
« Google
« SalesForce

The following Google sample policies are exposed by the OAuth2 Client API Keys Demo listener on
the following paths:

Axway API Gateway 7.6.2 OAuth User Guide 94

11 API Gateway as an OAuth 2.0 client

Sample Exposed on path
policy

Description

Google /client/google/authorize
Authorize

Google /client/google/calendar
Access

Calendar

Resource

Google /client/google/callback
Authorize
Callback

This policy is used in the authorization code flow
when API Gateway is acting as an OAuth client. It
redirects the resource owner's user agent to the
Google authorization server, where they are asked to
log in and grant access to the requested scope. It uses
the Redirect resource owner to Authz Server
filter (see Redirect resource owner to authorization
serveron page 105).

This policy is used to access the protected resource
(Google Calendar). It uses the the Retrieve OAuth
Client Access Token from Token Storage filter
(see Retrieve OAuth client access token from token
storage on page 107) to retrieve the access token
received from Google from the API Gateway client
access token store.

This policy is used when Google returns the
authorization code to the callback URL listener on API
Gateway. It uses the Get OAuth Access Token filter
(see Get OAuth client access token on page 104) to
exchange the authorization code for an access token.

To view the paths exposed by the OAuth2 Client API Keys Demo listener, select Environment
Configuration > Listeners > API Gateway > OAuth2 Client API Keys Demo > Pathsin
the Policy Studio tree. In the Resolvers window, click on the policy associated with a path to view
the sample policy. Alternatively, to view all of the sample policies, select Policies > OAuth Client

in the Policy Studio tree.

Configure OAuth client application credentials

OAuth 2.0 client credential profiles enable you to globally configure authentication settings for
OAuth 2.0 as a client. An OAuth 2.0 credential profile is the combination of OAuth service provider
details and a specific OAuth client application. An OAuth service provider defines the authorization
and token endpoints. API Gateway includes the following preconfigured OAuth providers:

o API Gateway
« Google

« SalesForce

You can access the preconfigured OAuth providers and add client application credentials under the
Environment Configuration > External Connections > Client Credentials > OAuth2
node in the Policy Studio tree. For more information, see Add application credentials on page 96.
You can also add new OAuth providers. For more information, see Add OAuth provideron page 100.

Axway API Gateway 7.6.2

OAuth User Guide 95

11 API Gateway as an OAuth 2.0 client

You must register client applications with the OAuth service provider (for example, Google) to
obtain a client ID and secret. You can also register additional details with the service provider where
required, such as the OAuth flow type and the redirect URL. The redirect URL is the location where
the OAuth provider sends the authorization code. This is implemented on API Gateway as an HTTP
listener. For more information, see Create a callback URL listeneron page 100.

« Google applications can be registered at https://cloud.google.com/console

« SalesForce applications can be registered at https://www.salesforce.com

« API Gateway applications can be registered in the Client Application Registry (port 8089).

Note If you have installed API Manager, you can register API Gateway applications in
API Manager (port 8075). For more information, see the API Manager User Guide.

The API Gateway provider represents OAuth services running on an API Gateway. For more
information on setting up the OAuth server on API Gateway, see Set up API Gateway as an OAuth 2.0
serveron page 43. The API Gateway provider uses the existing OAuth server samples for
authorization and token endpoints (for example,
https://127.0.0.1:8089/api/ocauth/authorize and
https://127.0.0.1:8089/api/oauth/token). The Google and SalesForce provider
settings ship with the current public endpoints.

Add application credentials

Each OAuth 2.0 provider can have multiple client application credentials. Each set of credentials
represents an application that has been registered with the provider. Upon registering, the
application is assigned a client ID and secret and can designate a redirect URL for receiving access
codes.

To add an application for an existing OAuth 2.0 provider, click an OAuth 2.0 client credential node
(for example, Google), and click the Add button on the OAuth2 Credentials tab of the OAuth2
Credential Profile window. Complete the following fields on the Add OAuth2 Application
dialog:

Name:
Enter a suitable name for this client application.

Client ID:
This identifies the client responsible for the OAuth request. This ID is assigned by the OAuth
provider.

Client Secret:
This is a confidential secret key used for authentication. This secret is assigned by the OAuth
provider.

OAuth Flow Type:
Select an OAuth flow type. The options are:

o Authz Code
« Client Credentials

o« JWT

Axway API Gateway 7.6.2 OAuth User Guide 96

https://cloud.google.com/console
https://www.salesforce.com/

11 API Gateway as an OAuth 2.0 client

o Resource Owner
« SAML

For more details on the authentication flows that API Gateway supports, see API Gateway OAuth 2.0
authentication flows on page 19.

Redirect URL:

Enter the URL of the client's redirect endpoint (for example,
https://localhost:8088/cauth callback). Thisisthe URL registered with the
provider for receiving access codes via a redirect from the authorization server. This must match a
listener configured on API Gateway (see Create a callback URL listeneron page 100).

To configure client scopes, SAML bearer settings, JWT settings, or other advanced settings, click the
appropriate tabs.

Configure scopes

You can configure the scopes that a client application can access on the Scopes tab. Click Add to
add a scope. This is the set of scopes required by the application, and this list must match, orbe a
subset of, the required scopes registered with the OAuth provider. For more information on scopes,
see Scopes in API Gateway on page 77.

Configure SAML bearer

You can configure SAML bearers on the SAML Bearer tab. According to the IETF draft document
SAML 2.0 Profile for OAuth 2.0, a SAML assertion can be used to request an access token when a
client wishes to utilize an existing trust relationship, expressed through the semantics of the SAML
assertion, without a direct user approval step at the authorization server. When a client application is
configured to use the SAML grant type, a SAML assertion must be either configured/generated or
made available on the message board.

To generate an assertion select the Generate assertion using following configuration option
and complete the following fields:

Use private key to sign SAML assertion:
Click Signing Key to select a private key to use to sign the assertion. This will be the private key
certificate registered with the OAuth provider.

Resource Owner ID:
Enter the identity of the resource owner as expected by the resource server. This can be specified
using a selector (for example, $ {authentication.subject.id}).

Assertion expires in:
Enter the time duration that the assertion is valid for. Expressed in days, hours, minutes, and
seconds.

Drift time (secs):
Enter a drift time in seconds to allow for clock skew.

Axway API Gateway 7.6.2 OAuth User Guide 97

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18

11 API Gateway as an OAuth 2.0 client

Alternatively, you can generate the assertion through other means and take it from the message
board by selecting the option Get assertion from message attribute named and entering the
name of the attribute (for example, $ {oauth.saml.assertion}).

Note The IETF draft document also describes how to use SAML 2.0 for client authentication.
Thisis not supported in API Gateway.

The API Gateway uses a SAML template to generate the SAML assertion. The template file is stored
under the Resources/Stylesheets directory in Policy Studio when the client demo is
deployed (see Deploy the OAuth client demo on page 122). Alternatively, you can find thisfilein
INSTALL DIR/apigateway/samples/ocauth/templates/samltemplate.xml and
import it via Policy Studio. At runtime the values in the template are substituted with values
configured for the OAuth client SAML application.

Configure JWT

You can configure JWT on the JWT tab. This enables you to configure JWT for authorization grant,
as defined by the IETF draft document JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants.

Note API Gateway only supports the use of JWT as authorization grant and does not support
JWT for client authentication.

Configure the following fields:

Sign using private key:
Select this option and click Signing Key to select a private key certificate that has been registered
with the OAuth provider, and use it to sign the JWT claim.

Sign using client secret:
Select this option to sign the JWT claim using a client secret issued by the OAuth provider.

JWT expiry (in secs):
Enter the expiry time for the JWT claim, in seconds.

Add additional JWT claims:
Click the Add button to add additional JWT claims. You can also Edit or Delete existing claims.

By default a JWT is generated with the following claim set:

Claim Default value

iss The application client ID.
aud The token endpoint of the provider.
exp The expiry time from the field JWT expiry (in secs).

iat The issued assertion time, the time the assertion was issued measured in seconds since
00:00:00 UTC, January 1, 1970.

Axway API Gateway 7.6.2 OAuth User Guide 98

http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07

11 API Gateway as an OAuth 2.0 client

These claims can be overridden or extended by adding additional claims. It is also possible to add
claims like scope to define scopes, and prn (for SalesForce), or sub (as defined in the IETF draft
document) to identify the resource owner for whom a token is being requested. Service defined
claims must also be added here. Unrecognized claims should be ignored by service providers.

Claim Default value

sub The subject ID of the resource owner. This identifies the resource owner for whom the
request is being made. The property prn can also be used here for some providers (for
example, SalesForce), but the use of this property has been superseded by sub in the
IETF specification.

scope A space delimited list of scopes within the claim, defining the required permissions of
the request.

Note Scopes must be added to a claim on this tab if they are required by the provider to be
present in a claim. The scopes defined on the Scopes tab are added to the query string of
the token request, but for flexibility they are not automatically added to the claim. The
reason for this is because JWT authorization grants are non-normative and claim sets must
be agreed in advance with individual OAuth providers. For example, SalesForce does not
allow the addition of scopes to a JWT claim, whereas Google requires a scope claim.
Automatically adding scopes from the Scopes tab to a claim could preclude a JWT grant
flow where scopes must be present in the request but not the claim.

Configure advanced settings

You can use the following options to specify where to add the client credentials in token requests
(the authorization header or the query string). This option applies to all standard grant types
excluding JWT and SAML.

In Authorization Header:
Select this option to add the client credentials to the authorization header.

In Query String:
Select this option to add the client credentials to the query string.

Use the following options to specify where to find resource owner credentials, for the resource
owner grant type.

Resource Owner ID:
Enter the resource owner ID. This can be specified as a selector.

Resource Owner Password:
Enter the resource owner password. This can be specified as a selector.

Finally, in the Properties table you can add additional properties to pass with authorization or
token requests. These properties can be used to set up provider-specific options, for example,
Google authorization requests require the parameter access_type=offline to issue a refresh
token.

Axway API Gateway 7.6.2 OAuth User Guide 99

11 API Gateway as an OAuth 2.0 client

After you have configured your OAuth 2.0 client credentials globally, you can select the client
credential profile to use for authentication on the Authentication tab of your filter (for example, in
the Connection and Connect To URL filters) in the policy calling the resource server. The selected
client credential links back to the access token store holding the access token received from the
OAuth2 server. When you invoke the policy, the filter sets the bearer token in the authorization
header. For more information, see the API Gateway Policy Developer Guide.

Add OAuth provider

To configure a new OAuth 2.0 provider, right-click OAuth2, and select Add OAuth2 Client
Credential. Complete the following fields on the OAuth2 Provider Configuration dialog:

Profile Name:
Enter a suitable name for this OAuth provider configuration (for example, Google or
Microsoft).

Authorization Endpoint:

Enter the URL of the OAuth provider's authorization endpoint (for example,
https://accounts.google.com/o/oauth2/auth). Thisisa public URL where a
resource owner is directed to authorize a client application. This is used in the authorization code
flow.

Token Endpoint:

Enter the URL of the OAuth provider's token endpoint (for example,
https://accounts.google.com/o/oauth2/token). Thisisa public URL where a client
application can request a token.

Token Store:
Click the browse button to choose an access token store. This is where received tokens are persisted.

You can configure OAuth access token stores globally under the Environment Configuration >
Libraries node in the Policy Studio tree. These can then be selected in the Access Token Store
field. For more details on configuring access token stores, see Manage client access tokens on page
101.

Store OAuth State in this Cache:

Click the browse button to choose a cache. This is where the state of an authorization request is
stored. This is used in the authorization code flow to maintain state when the user is directed to the
authorization server for authorization.

Tip To change the configuration of an existing OAuth 2.0 provider, click the OAuth client
credential node, and edit the settings on the OAuth2 Provider Settings tab of the
OAuth2 Credential Profile window.

Create a callback URL listener

The callback URL that is registered with an OAuth provider is implemented very simply by creating a
matching relative path in an HTTP listener. The policy for this path needs only to add a Redirect
resource owner to Authz Server filter (see Redirect resource owner to authorization serveron

Axway API Gateway 7.6.2 OAuth User Guide 100

11 API Gateway as an OAuth 2.0 client

page 105). The filter must be configured with a reference to the relevant provider profile for this
callback URL.

Callback sample

In the client demo configuration the callback policy first checks if the current session is for an
authenticated user. If it is an anonymous session the policy exchanges the code for an access token
and attempts to verify an ID token if one is received. If the ID token is valid it sets the
authentication.subject. id to the sub identifier and saves the token. Using the sub the
policy then checks the local user store for additional user information (in this case the local user
store is a cache set up to simulate an actual user store). If an entry cannot be found for the user, a
request is made to the provider's UserInfo endpoint using the access token. A successful request
updates the local user store with the returned user data. Finally, a new authenticated session is
created for the user and they are returned to the client application home page where they are now
signed in. (In a real world example, a user might be presented with a form to alter or embellish the
retrieved data before it is persisted).

Eﬁ!ﬁﬂ Call'ls Logged In’ |
/ \

& Exchange Authorization Code For Token and ID Tokenl & Exchange Authorization Code for Token

é Delete an OAuth Client Access Tokenl] set authenticated subject idl

.4 Redirect to Login Pagel é Save the OAuth Tokenl

|E§ Get User Info from local User storel

QE Get info From APIGateways Userinfo Servi(el

@ Update local User storel

r
@ Create new authenticated session |

S~

¥
.41 Redirect to Client app home pagel

For more information on the client demo, see API Gateway OAuth client demo on page 119.

Manage client access tokens

You can configure client access token stores under the Environment Configuration > Libraries
> OAuth2 Stores node in the Policy Studio tree. API Gateway can store client access tokensin its
cache, in an embedded database, or in a relational database. For more information on the persistent
storage options, see Manage access tokens and authorization codeson page 47.

Axway API Gateway 7.6.2 OAuth User Guide 101

11 API Gateway as an OAuth 2.0 client

To store client access tokens in a relational database, create the supporting schema using the
oauth-client.sqgl SQL scripts that you can find in the following directory:

INSTALL DIR/apigateway/system/conf/sql/

OAuth client access tokens are purged on expiry. After a successful token request the OAuth client
access token (and potentially a refresh token) are stored in persistent storage. OAuth authorization
servers usually return an expiry with the access token, otherwise the default expiry of 3600 seconds
is used. An expiry is not usually returned with a refresh token, but a default expiry of 30 days is
used. You can alter these expiry settings in the Client Token Cleanup Settings section of the
client access token store.

Note For client access token stores backed by a database, you can configure the Purge

expired tokens field to perform a purge (for example, run a query to remove tokens) at a
specified interval.

Set Bearer token in authorization header

You can configure an OAuth credential profile to set a Bearer token in the authorization header on
API Gateway when calling a resource server. This example uses a call policy with a Connect to URL
filter to call the resource server.

1.
2.

In the Policy Studio tree, click External Connections > Client Credentials > OAuth2.

On the OAuth Credentials tab, double-click the credential profile to edit. To create a new
credentials profile, see Add application credentials on page 96.

If you do not already have a token to access the API, add a Get OAuth Access Token filter to
get a token, see Get OAuth client access token on page 104.

Call the resource server:
« Select the filter Connect to URL.
« Select the Authentication tab.
« Select a credential profile.

Select the client credential. This links back to the access token store which holds the access
token you received from the OAuth2 server.

Invoke this filter to call the resource server. The Bearer token in the authorization header is set.

Axway API Gateway 7.6.2 OAuth User Guide 102

OAuth 2.0 client filters

This section describes the filters you can use when API Gateway is acting as an OAuth client. These
include:

Filter Description

Delete an OAuth client access token on Delete a client access token.
page 103

Get OAuth client access token on page Request a client access token.

104
Redirect resource owner to Redirect a resource owner to an authorization server
authorization serveron page 105 to grant or deny access to a resource.

Refresh an OAuth client access token on Refresh a client access token.
page 106

Retrieve OAuth client access token from Retrieve a previously stored client access token.
token storage on page 107

Save an OAuth client access token on Save a client access token.
page 108

Delete an OAuth client access token

Overview

You can use the Delete an OAuth Client Token filter to explicitly delete an OAuth client access
token, or refresh token, or both.

This filter requires the message attribute cauth.client.application to determineif the
application has an access token, or refresh token, or both. The filter returns false if the required
message attribute is not set or if there is a problem removing an access or refresh token from token
storage.

Axway API Gateway 7.6.2 OAuth User Guide 103

12 OAuth 2.0 client filters

General settings

Configure the following general setting for the Delete an OAuth Client Token filter:

Name:
Enter a suitable name for this filter.

Get OAuth client access token

Overview

You can use the Get OAuth Access Token filter to request a token. This filter attempts to get the
access token from persistent storage, and if a token is not available it sends an outbound token
request.

General settings

Configure the following general settings for the Get OAuth Access Token filter:

Name:
Enter a suitable name for this filter.

Choose OAuth Token Key:
Enter the message attribute to be used as the key to look up the token. Defaults to
${authentication.subject.id}.

If no key is specified in this field, the access token is not saved. This is to accommodate anonymous
use of OAuth whereby the user starting the process does not need to authenticate with API Gateway
first.

Optionally select a client credential profile:

Select this option and click the browse button to select an OAuth client credential profile. This can
be used if no preceding filter has set the application profile on the message board, or to override the
existing application profile.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, SSL/TLS protocols,
and ciphers on the SSL tab. For details on the fields on this tab, see "Connect to URL" in the API
Gateway Policy Developer Filter Reference.

Axway API Gateway 7.6.2 OAuth User Guide 104

12 OAuth 2.0 client filters

Additional settings

The Settings tab allows you to configure the following additional settings:

« Retry

« Failure
« Proxy

« Redirect
o Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see "Connect to URL" in the API Gateway Policy Developer Filter
Reference.

Redirect resource owner to authorization server

Overview

The purpose of the Redirect resource owner to Authz Server filter is to redirect the resource
owner's user agent to the OAuth authorization server. This filter can only be used in the
authorization code flow.

General settings

Configure the following general settings for the Redirect resource owner to Authz Server
filter:

Name:
Enter a suitable name for this filter.

Choose OAuth Token Key:

Enter the message attribute to be used as the key to look up the token. The token key must be set to
the authentication value you require for the OAuth token. In the context of an OpenID Connect flow
the OAuth token key can be a cookie value. Defaultsto $ {authentication.subject.id}.

If no key is specified, this field is ignored. This is to accommodate anonymous use of OAuth
whereby the user starting the process does not need to authenticate with API Gateway first.

Override scopes setup for authz request:

This field allows you to override the scopes assigned to a client profile. This could potentially be
used in the OpenID Connect flow whereby you could specify scopes for the OpenID Connect flow,
or if you already have a session you would not need to specify OpenID Connect scopes. (For an
example, see the OAuth client demo.)

Axway API Gateway 7.6.2 OAuth User Guide 105

12 OAuth 2.0 client filters

Optionally select a client credential profile:

Select this option and click the browse button to select an OAuth client credential profile. This can
be used if no preceding filter has set the application profile on the message board, or to override the
existing application profile.

Configure OAuth State Map:

This allows you to configure extra parameters in the OAuth state map (for example, to implement
cross-site request forgery (CSRF) protection). By default the state map contains c1ient idand
oauth.token. id. Any extra parameters added here are added to the state map. The message
attribute cauth . state.map will be available at the callback endpoint when an authorization
code is exchanged for a token.

Select one of the following options:
. Add extra state properties:
Click Add to store additional state properties, and enter the Name and Value in the dialog.
« Retrieve properties from selector:

Enter the attribute that stores the properties. Defaults to oauth.state.map.

Refresh an OAuth client access token

Overview

OAuth 2.0 client tokens are designed to be short lived and have an expiry time, however, tokens can
be issued with refresh tokens. If a token has expired, and it has a refresh token, you can use the
Refresh an OAuth Client Access Token filter to explicitly refresh the token. This filter looks up
the token and checks for a refresh token. If it finds a refresh token, the filter sends an outbound
refresh token request to the OAuth authorization server to obtain a new access token (and possibly a
new refresh token).

General settings
Configure the following general settings for the Refresh an OAuth Client Access Token filter:

Name:
Enter a suitable name for this filter.

Choose OAuth Token Key:
Enter the message attribute to be used as the key to lookup the token. Defaults to
${authentication.subject.id}.

Optionally select a client credential profile:

Select this option and click the browse button to select an OAuth client credential profile. This can
be used if no preceding filter has set the application profile on the message board, or to override the
existing application profile.

Axway API Gateway 7.6.2 OAuth User Guide 106

12 OAuth 2.0 client filters

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, SSL/TLS protocols,
and ciphers on the SSL tab. For details on the fields on this tab, see "Connect to URL" in the API
Gateway Policy Developer Filter Reference.

Additional settings

The Settings tab allows you to configure the following additional settings:

« Retry

« Failure
« Proxy

« Redirect
. Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see "Connect to URL" in the API Gateway Policy Developer Filter
Reference.

Retrieve OAuth client access token from token
storage

Overview

You can use the Retrieve OAuth Client Access Token from Token Storage filter to retrieve a
stored access token from a client access token store.

Tokens received from OAuth providers are stored in a Client Access Token Store. You can
configure client access token stores under the Environment Configuration > Libraries >
OAuth2 Stores node in the Policy Studio tree. Similar to an Access Token Store, this store can
be backed by an API Gateway cache (default), a relational database, or an Apache Cassandra
database. (For more details on client access token stores, see Manage client access tokens on page
101.)

A configured token store is associated with an OAuth provider (see Add OAuth provideron page
100) and is shared by all client applications registered with that provider.

These stored tokens can be retrieved by this filter by specifying the OAuth 2.0 provider profile (the
client application registered with a provider) and the token key (for example, the authentication
subject id of the current user). Stored tokens are indexed by the client ID of the the client

Axway API Gateway 7.6.2 OAuth User Guide 107

12 OAuth 2.0 client filters

application and the token key. If authentication.subject. id is not available, the client ID
is used for both indexes. This is valid for grant types that treat the client application as the resource
owner, that is, client credentials, JWT, and SAML (when no resource owner is specified).

If a valid token is found by this filter it is placed on the message board as
oauth.client.accesstoken, and the filter passes. If the token is expired, or there is no
token found, the filter fails (expired tokens are still placed on the message board). The fail path can
be used to refresh an expired token or start the process of requesting a token. The client application
is also placed on the message board, under the attribute name cauth.client.application,
for use in subsequent filters.

General settings

Configure the following general settings for the Retrieve OAuth Client Access Token from
Token Storage filter:

Name:
Enter a suitable name for this filter.

Choose OAuth Token Key:
Enter the message attribute to be used as the key to lookup the token. Defaults to
${authentication.subject.id}.

Choose profile to be used for token request:
Click the browse button to select an OAuth 2.0 client credential profile.

Save an OAuth client access token

Overview

You can use the Save an OAuth Client Token filter to save a token with a different token key.
This filter can fail if:

« The token has no token key
« The token has no application
« Thetoken key is the same key that was already stored for the application

« Thereis a problem saving the token to persistent storage

General settings
Configure the following general settings for the Save an OAuth Client Token filter:

Name:
Enter a suitable name for this filter.

Axway API Gateway 7.6.2 OAuth User Guide 108

12 OAuth 2.0 client filters

Choose OAuth Token Key:
Enter the message attribute to be used as the token key. Defaults to
${authentication.subject.id}.

Set Bearer token in authorization header

You can configure an OAuth credential profile to set a Bearer token in the authorization header on
API Gateway when calling a resource server. This example uses a call policy with a Connect to URL
filter to call the resource server.

1.
2.

In the Policy Studio tree, click External Connections > Client Credentials > OAuth2.

On the OAuth Credentials tab, double-click the credential profile to edit. To create a new
credentials profile, see Add application credentials on page 96.

If you do not already have a token to access the API, add a Get OAuth Access Token filter to
get a token, see Get OAuth client access token on page 104.

Call the resource server:
« Select the filter Connect to URL.
« Select the Authentication tab.
« Select a credential profile.

Select the client credential. This links back to the access token store which holds the access
token you received from the OAuth2 server.

Invoke this filter to call the resource server. The Bearer token in the authorization header is set.

Axway API Gateway 7.6.2 OAuth User Guide 109

APl Gateway and OpeniD 1 3
Connect

This section describes how to configure API Gateway as an OpenID Connect identity provider (IdP)
and as an OpenID Connect relying party (RP). It describes the following:

« OpenID Connect features of API Gateway — See Introduction to API Gateway OpenlID Connect
on page 110.

« Sample OpenID Connect workflow — See OpenID Connect flow on page 113.

« How to set up API Gateway as an OpenID Connect server — See Build an OpenID Connect IdP
serveron page 114.

« How to set up API Gateway as an OpenID Connect client — See Build an OpenID Connect client
on page 115.

Introduction to APl Gateway OpenlID Connect

The OpenID Connect 1.0 (QID) protocol is a simple identity layer on top of the OAuth 2.0 protocol.
OAuth 2.0 provides an access authorization delegation protocol, and OpenID Connect leverages
OAuth features to allow authorized access to user authentication session APIs in an interoperable
manner. OpenID Connect uses a REST interface and simple JSON assertions called JSON Web Tokens
(JWTs) to provide identifying claims about users. The protocol is designed to be API-friendly and
adaptable to multiple formats such as web and mobile, and it has built-in provisions for robust
signing and encryption.

In its simplest form, an OpenID Connect deployment allows applications (such as browsers, mobiles,
and desktop clients), to request and receive information about a user's identities. This allows the
user to authenticate to a third-party application that acts as a relying party (RP) using an identity
established with the OpenID Connect identity provider (IdP).

This section describes the concepts behind OpenID Connect and demonstrates how to use the API
Gateway as an OpenID Connect identity provider and as a relying party. The following sections use
the client demo that ships with API Gateway to illustrate OpenID Connect concepts (see API Gateway
OAuth client demo on page 119).

OpenlID Connect concepts

OpenID Connect is specified in the OpenID Connect 1.0 specification. It defines the following
concepts:

« Claim: A piece of information about an authenticated user (for example, email or phone
number).

Axway API Gateway 7.6.2 OAuth User Guide 110

http://openid.net/specs/openid-connect-core-1_0.html

13 API Gateway and OpenlID Connect

« Relying party (RP): OAuth 2.0 client application requiring end-user authentication and claims
from an OpenID Connect identity provider. API Gateway can act as a relying party consuming
services from a third party such as Google.

« Identity provider (IdP): OAuth 2.0 authorization server that is capable of authenticating the
end-user and providing claims to a relying party about the end user. API Gateway can act as an
identity provider for relying parties.

« ID token: JSON Web Token (JWT) that contains claims about the authenticated user.

« UserInfo endpoint: Protected resource that, when presented with an access token by the client,
returns authorized information about the end user.

Relationship to OAuth 2.0

To support maximum interoperability, the OID specification defines standard scopes, defined
request objects and corresponding claims, the ID token format, and a UserInfo endpoint. These
features represent the primary additions to the OAuth 2.0 standard and should be available across all
IdP implementations of OpenID Connect.

Standard Scopes openid, profile, email, address, phone

Method to ask for

. Request object and claims
More granular claims

Info about the authenticated user

Get attributes about the user
Translate the tokens

UserInfo Endpoint

Axway API Gateway 7.6.2 OAuth User Guide 111

13 API Gateway and OpenlID Connect

Standard scopes

The OpenID Connect specification defines a set of predefined scopes for use in the OpenID Connect
authorization flow.

« openid - REQUIRED. Informs the authorization server that the client is making an OpenID
Connect request. This is the only scope directly supported in the OpenID Connect filters. If the
openid scopeis not present in an authorization request the OpenID Connect Create ID
Token filter passes, leaving the message unmodified. When it is present, and the request is
valid, the ID token associated with the authentication session is returned. If the response
type includes token, the ID token is returned in the authorization response along with the
access token. If the response type includes code, the ID token is returned as part of the
token endpoint response.

The following scopes are not directly catered for in the OpenID Connect filters, but are made
available on the message so that policy developers can correctly respond to them in policies. They
differ to OAuth 2.0 scopes in that they do not need to be expressly associated with a resource or
API, and are automatically considered valid scopes for client applications. However, these scopes
can be considered regular OAuth 2.0 scopes when accessing the UserInfo endpoint, and if they are
present in the access token, policy developers can construct an appropriate claims response.

« profile— OPTIONAL. This scope requests that the issued access token grants access to the
end user’s default profile claims (excluding the address and emai 1 claims) at the UserInfo
endpoint. The profile claims can include: name, family name, given name, middle
name, nickname, preferred username, profile, picture, website, gender,

birthdate, zoneinfo, locale, and updated at.

« email — OPTIONAL. This scope requests that the issued access token grants access to the
email and email verified claims atthe UserInfo endpoint.

« address — OPTIONAL. This scope requests that the issued access token grants access to the
address claim at the UserInfo endpoint.

« phone — OPTIONAL. This scope requests that the issued access token grants access to the
phone number and phone number verified claims atthe UserInfo endpoint.

Request object and claims

The OpenID Connect request object is an optional part of the specification and is not supported in
the current version of API Gateway. The request object is used to provide OpenID Connect request
parameters that might differ from the default ones. Request objects might be supported in future
versions of API Gateway.

Axway API Gateway 7.6.2 OAuth User Guide 112

13 API Gateway and OpenlID Connect

ID token

The ID token is a JWT-based security token that contains claims about the authentication of an end
user by an authorization server. When using the authorization code flow the ID token is returned as
a property of the access token. For the implicit and some hybrid flows the ID token is returned in
response to the authorization request. As an IdP, API Gateway will produce an ID token using the
Create ID Token filter, either in the authorization endpoint policy or the token endpoint policy.
This token will be signed for verification by the client and can include user defined claims. This
provides flexibility in creating claims from any user store. Acting as an RP, a client can verify a
received ID token with the Verify ID Token filter. This should be done in the callback policy as API
Gateway does not support implicit flows as a client. After being verified, the ID token can be used to
look up or create a user record and create an authenticated session for the user.

Userlnfo endpoint

The UserInfo endpoint is defined as an OAuth 2.0 protected resource that returns extended claims
about the authenticated end user. To access this resource an API Gateway acting as an RP must use
the access token received in the OpenID Connect authentication process. A successful request will
return a JSON object with the claims for the user. As an IdP the implementation of the UserInfo
endpoint should be similar to any OAuth protected resource with a minimum scope requirement of
openid. The implementation of this endpoint is deliberately left open for policy developers to
integrate their own authentication stores.

Prerequisites

To use the OpenID Connect features of API Gateway, the following are required:

« Aknowledge of the OAuth 2.0 specification
« Aknowledge of API Gateway and Policy Studio
o Alocal installation of API Gateway and Policy Studio

« Adeployed client demo (see Deploy the OAuth client demo on page 122)

OpenID Connect flow

The OpenID Connect process follows the OAuth 2.0 three-legged authorization code flow (see
Authorization code grant (or web server) flow on page 20), but with the additional concepts of an
ID token and a UserInfo endpoint.

The authorization code flow consists of the following steps:

1. Relying party prepares an authentication request containing the desired request parameters.

2. Relying party sends the request to the authorization server by redirecting the end user via their
user agent (browser).

3. Authorization server authenticates the end user.

Axway API Gateway 7.6.2 OAuth User Guide 113

13 API Gateway and OpenlID Connect

4
5
6.
7
8

Authorization server obtains end user consent and authorization.

Authorization server sends the end user back to the relying party with an authorization code.
Relying party requests a response using the authorization code at the token endpoint.

Client receives a response that contains an ID token and access token in the response body.

Client validates the ID token and retrieves the end user's subject identifier.

On successful completion of these steps the user can be considered authenticated in the relying
party's application. At this point the client application can make a request for further claims and, if
required, create a local record of this user for future use, or retrieve a previously created user record.

The following diagram illustrates these steps.

User Agent Relying Party Authorization Server
(Browser) (Client App)

1.

Starting at your domain login
page User clicks on Sign in GET/authorize
with <Provider> Link

302 Redirect to provider authz endpoint

GET/<Provider>/authorize/endpoint

1.
Authorization server checks for existing session.
302 Redirect to provider login Redirect user to login if session does not exist.

GET/<Provider>/login/endpoint

200 Login page

2. 2.

Browser renders login page. If the scopes in the request are not already

User authenticates. POST credentials/<Provider>/login/endpoint authorized present the user with the authorization
page.

200 Consent page

3.
Browser renders consent

D authorizes. POST consent/<Provider>/authz/endpoint

3.
) On succcessful authorization redirect the user to the
302 Redirect to RP Callback Client apps redirect URL with an authz code.

GET/client/callback

4.
The Authorization Code is exchanged for an ID
. Token and Access Token. The ID Token is a signed
POST/<Provider>/token/endpoint JWT containing basic claims. The Access Token can
be used to access further User claims at the user
info endpoint.

200 Respond with tokens

5.

4. 200 Respond with home page The RP verifies the ID Token, if valid the user is

Browser renders home page. considered authenticated and a session is
established.

GET/<Provider>/user/info

6.
The RP optionally uses the access token to request
200 Respond with just claim additional claims from the user_info endpoint.

Build an OpenID Connect IdP server

To build an IdP server on top of an existing OAuth deployment, follow these steps:

1.

Add a Create ID Token filter (see Create an OpenID Connect ID token on page 116) to the
token endpoint policy after the Access Token using Authorization Code filter (see Get
access token using authorization code on page 52). If API Gateway will also support implicit or
hybrid grant types then add a Create ID Token filter to the authorization endpoint policy after
the Authorization Code Flow filter (see Consume authorization requests on page 63).

Create a UserInfo endpoint. This is similar to any OAuth protected resource using a Validate
Access Token filter (see Validate access token on page 82) with a minimum scope requirement
of openid. After a successful validation the UserInfo policy must create a JSON object

Axway API Gateway 7.6.2 OAuth User Guide 114

13 API Gateway and OpenlID Connect

response representing claims about the user associated with the access token. The user can be
identified by the Validate Access Token filter with the authentication.subject.id
message property.

The following is a non-normative example of the JSON response:

{
"kind": "APIGatewayOpenIdConnect",
"gender": "femail",
"sub": "sampleuser",
"name": "Sample User",
"given name": "Sample",
"family name": "${User}",
"picture": "https://URL.TO.IMAGE/",
"email": "sampleuser@gatweway",
"email verified": "true",
"locale": "en"

}

Build an OpenID Connect client

Building a simple OpenID Connect client involves adding only one additional step to the OAuth
authorization code flow for an OAuth client (see OAuth 2.0 example client workflow on page 93):

« Verify the ID token in the callback policy of the client application. To verify the ID token, use
the Verify ID Token filter (see Verify an OpenID Connect ID token on page 117) after the Get
OAuth Access Token filter (see Get OAuth client access token on page 104). If the Verify ID
Token filter relies on a JSON Web Key (JWK) set for verification, you must download (and
optionally cache) the IdP key set. The client demo includes an example of using the Google
JWK set (see API Gateway OAuth client demo on page 119).

If the ID token is successfully verified, the filter passes and the following message properties are
created:

o claim (openid.idtoken.claim): The claim is a JSON object representing basic claims
about the user.
» subject (openid.idtoken. sub): The subjectisthe IdP's unique identifier for the user.

The policy designer can decide how best to use these properties. For example, the subject could be
used to look up a local user store to see if there is an existing relationship with the user. If there is no
existing user, the claim could be used to generate a new user record for future use. At this point, the
user can be considered authenticated and a new session can be created. If an access token was
returned it can be used to retrieve additional claims from the IdP's UserInfo endpoint.

Note When API Gateway is acting as a client application, the implicit grant type is not supported.

Axway API Gateway 7.6.2 OAuth User Guide 115

OpenlD Connect filters

This section describes the filters you can use for OpenID Connect flows. These include:

Filter Description

Create an OpenlID Connect ID token on page 116 Create an ID token.

Verify an OpenID Connect ID token on page 117 Verify an ID token.

Create an OpeniID Connect ID token

You can use the Create ID Token filter to create an OpenID Connect ID token when API Gateway is
acting as an OpenID Connect server (also known as OpenID provider or OP). 1t is the responsibility
of the OAuth authorization server to generate an ID token. The ID token is a security token that
contains claims about the authentication of an end user by an authorization server when using a
client. The ID token is represented as a JSON Web Token (JWT).

To generate an ID token the following claims are required:
e iat
e iss
o exp
e sub
o aud

For more information on the required claims within an ID token, see the OpenID Connect
specification.This filter enables you to specify the subject (sub), the issuer (iss), and the
expiration time (exp) of the ID token. Other claims (for example, iat, exp, and aud) are handled
internally. The JWT expiry in seconds is appended on to the current time to give the ID token an
expiry.

This filter also enables you to specify how to sign the ID token, and to add additional claims to the
ID token.

General settings

Configure the following general settings for the Create ID Token filter:

Name:
Enter a suitable name for this filter.

Axway API Gateway 7.6.2 OAuth User Guide 116

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

14 OpenlID Connect filters

Subject (sub):

Subject identifier. A locally unique and never reassigned identifier within the issuer for the end-user,
which isintended to be consumed by the client. The default value is
${authentication.subject.id}.

Issuer (iss):
Issuer identifier for the issuer of the response. The default valueis $ {http.request.url}.

Expiration time in secs (exp):
Enter the expiry time for the ID token, in seconds. The default value is 60 seconds.

Apply a signature algorithm:
Select one of the following options:

« Sign ID token with private key:
Select this option and click Signing Key to select a private key certificate that has been
registered with the OpenlID provider, and use it to sign the ID token.

« Sign using client secret:
Select this option to sign the ID token using a client secret issued by the OpenID provider.

Add the following claims:
Click the Add button to add additional claims. You can also Edit or Delete existing claims.

Verify an OpenID Connect ID token

You can use the Verify ID Token filter to verify an OpenID Connect ID token using a JSON Web
Key (JWK) set, certificate, or client secret. The ID token is a security token that contains claims
about the authentication of an end user by an authorization server when using a client. The ID token
is represented as a JSON Web Token (JWT).

This filter requires the message attributes openid. idtoken and
oauth.client.application tobeon the message whiteboard. The filter parses the ID token
into a JWT header and claim and validates the signature using either a JWK set, a certificate, or a
client secret. On success the filter returns true and sets the ID token (openid.idtoken) claim
and sub values on the message whiteboard.

For more information on OpenID Connect, see the OpenID Connect specification.

General settings

Configure the following general settings for the Verify ID Token filter:

Name:
Enter a suitable name for this filter.

Axway API Gateway 7.6.2 OAuth User Guide 117

http://openid.net/specs/openid-connect-core-1_0.html

14 OpenlID Connect filters

Clock Skew (seconds):

Enter a number of seconds to allow for clock skew. This allows for clock skew when verifying the
token'sissued at (iat) time, expiration time (exp), and not before values. The default value is 60
seconds.

Issuer (iss):
Issuer identifier for the issuer of the response. The default value is
S${ocauth.client.application.getTokenURL () .toString() }.

Verify ID Token:
Select one of the following options:

« With JSON Web Key Set:
Select this option to verify the ID token using a JWK set.

- With Certificate:
Select this option and click Signing Key to select a private key certificate, and use it to verify
the ID token.

« With Client Secret:
Select this option to verify the ID token using a client secret.

Axway API Gateway 7.6.2 OAuth User Guide 118

API| Gateway OAuth client 1 5
demo

API Gateway ships with a client demo that shows a typical use case for OAuth 2.0 and OpenID
Connect.

There are a number of actors involved in this demo:

« API Gateway acts as both a OpenID Connect relying party (RP) and an OpenID Connect identity
provider (IdP). It also acts as a basic OAuth client application, an OAuth authorization server
(AS) and an OAuth resource server (RS).

« Googleis configured as an OAuth AS and RS and as an OpenID Connect IdP
« Salesforce is configured as an OAuth AS and RS but not as an OpenID Connect IdP.

To complete the configuration for Google and Salesforce you must register a client application with
each provider, and update the relevant provider profiles with the received client ID and secrets. For
more information, see Configure OAuth client application credentials on page 95.

When you connect to the client demo (for example, at https://localhost:8088), alogin
page is displayed:

OAuth Client Demo

OAuth Client Demo

User Name

Use OpenlD Connect

Sign in with API Gateway

S+ signinwith Google

This page presents three login options:

1. Enter a user name and password and click Sign In. When you sign in with this option, API
Gateway acts as a direct authentication server. This is regular form-based authentication backed
by the relevant filter. The user credentials are checked against the local user store and a session
is created for a valid user. After being authenticated the user can instantiate an OAuth 2.0
authorization flow to get an access token for one of the configured OAuth authentication
servers.

2. Sign in with API Gateway. When you sign in with this option API Gateway acts as both the
RP and the corresponding IdP. The IdP role is conceptually a separate API Gateway instance but
for the purposes of the demo a single instance fulfills both roles. This option causes the API

Axway API Gateway 7.6.2 OAuth User Guide 119

15 API Gateway OAuth client demo

Gateway as RP to issue an authorization redirect through the user agent to the IdP. The request
includes scopes for an ID token and a regular access token. After being authenticated the
access token can be used to access a protected resource as well as the UserInfo endpoint.

3. Sign in with Google. When you sign in with this option the API Gateway acts as the RP with
Google acting as the IdP. You must update the configuration in Policy Studio to add a valid set
of Google OAuth credentials (see Add application credentials on page 96). This option redirects
the user to Google for authentication and authorization. The authorization request asks for
OpenID and access to the users calendar.

Note The credentials you create with Google must have access to the Calendar and
Google+ APIs.

After successful authentication, you are presented with the following page:

ClientApp APIGateway ~ Google Salesforce Instructions Logout

OAuth Client

This page demonstrates the OAuth Client capabilities in the API Gateway. This Client application has OAuth credentials
registered with three OAuth Providers: APl Gateway, Google and Salesforce.

@Gateway GO 8[Sﬂle\s]l(‘)rce

This application is authorised with apigateway This application is not aut
for the current user f rent user - ple:

n is not authorised with
urrent user - please

‘Authorise »
. =3

When using one of OpenID Connect options the user information presented on this page is acquired
by accessing the UserInfo endpoint of the relevant IdP. The Get Resource button uses the received
access token to access a protected resource (for example, the Google resource accessed is the user's
Google calendar).

Client policies

The majority of the work in this demo is carried out in the client policies. To support the different
methods of authentication (form-based and OpenID Connect), the demo is configured to issue an
anonymous session to start the process. This anonymous session is replaced with an updated user
session after the user has been identified with either a successful form login or an ID token. For an
example of the client policies used, see Callback sample on page 101.

Axway API Gateway 7.6.2 OAuth User Guide 120

Deploy OAuth configuration 1 6

The OAuth service is not available in an out-of-the-box installation (unless you have installed API
Manager) and you must deploy it manually.

To deploy OAuth, perform the following steps:

1. Open Policy Studio and open or create a new project.
2. Select File > Configure OAuth.

3. If you do not have any Cassandra hosts configured, you must add a Cassandra host before you
can continue:

« Enter a name for the Cassandra server (for example, local cassandra).
« Enter the host name of the Cassandra host (for example, 1ocalhost).
« Enter the port of the Cassandra host (for example, 9042).

4. Click Next.

5. Select the OAuth deployment type. The options are:

o all —Select this option to deploy the OAuth server components and the OAuth client
demo.

« authzserver — Select this option to deploy the OAuth server components only.
« clientdemo — Select this option to deploy the OAuth client demo only.

6. Click Finish.

7. Click Deploy in the toolbar to deploy the updated configuration to API Gateway.

Note In earlier versions of API Gateway, OAuth was configured using the
deployOAuthConfig.py script provided in INSTALL
DIR/apigateway/samples/scripts/oauth directory. This scriptis still
supported for backwards compatibility, but we recommend that you use Policy Studio to
configure OAuth in this version. For more information on running the
deployOAuthConfig.py script, run the script with the --he1p option. Apache
Cassandra must be installed and running, and the Cassandra hosts configured in Policy
Studio before you run the deployOAuthConfig. py script.

Deploy the OAuth service

To deploy the OAuth 2.0 services listener, supporting policies, and client demo, configure OAuth in
Policy Studio using the a11 deployment type.

This deploys the OAuth server components on port 8089 and deploys the client demo on port 8088.

Axway API Gateway 7.6.2 OAuth User Guide 121

16 Deploy OAuth configuration

Note Thisoption does not register the sample client applications in the Client Application
Registry. You must import them manually as detailed in Import sample client applications
on page 89.

Tip When you use the al1 deployment type, this deploys both the server and client
components. To deploy the server components only, use the authzserver deployment
type.

Deploy the OAuth client demo

API Gateway ships with a preconfigured client demo that demonstrates the use of API Gateway and
Google as OpenID providers, and API Gateway as a client. The client demo is not deployed during
installation and must be deployed manually.

To deploy the OAuth client demo, configure OAuth in Policy Studio using the c1ientdemo
deployment type.

This deploys the client demo on port 8088.

Note Thisoption does not register the sample client applications in the Client Application
Registry. You must import them manually as detailed in Import sample client applications
on page 89.

Tip
« If you have already deployed OAuth in Policy Studio using the a11 deployment type, the client
demo is already available.

« If you have deployed only the OAuth server configuration using the authzserver
deployment type, or if you have installed API Manager, you must deploy it using the
clientdemo deployment type to deploy the client demo.

For more information on the OAuth client demo, see API Gateway OAuth client demo on page 119.

Axway API Gateway 7.6.2 OAuth User Guide 122

Appendix A: OAuth 2.0 message
attributes

This section describes the message attributes that are available in the API Gateway OAuth server and
OAuth client filters.

OAuth 2.0 server message attributes

Most of the OAuth 2.0 server policy filters in the API Gateway generate message attributes that can
be queried further using the API Gateway selector syntax. For example, the message attributes
generated by the OAuth server filters include the following:

» accesstoken

e accesstoken.authn

o« authzcode

e authentication.subject.id
e cauth.client.details

« scope attributes

For more details on selectors, see the API Gateway Policy Developer Guide.

accesstoken methods

The following methods are available to call on the accesstoken message attribute:

S{accesstoken.getValue () }
${accesstoken.getExpiration () }
${accesstoken.getExpiresIn() }
${accesstoken.isExpired() }
${accesstoken.getTokenType () }
${accesstoken.getRefreshToken () }
${accesstoken.getOAuth2RefreshToken
${accesstoken.getOAuth2RefreshToken
${accesstoken.getOAuth2RefreshToken
${accesstoken.getOAuth2RefreshToken

() .getValue () }

() .getExpiration () }
() .getExpiresIn() }
() -hasExpired() }
S{accesstoken.hasRefresh ()}

S{accesstoken.getScope () }

${accesstoken.getAdditionalInformation () }

Axway API Gateway 7.6.2 OAuth User Guide 123

Appendix A: OAuth 2.0 message attributes

The following example shows output from querying each of the accesstoken methods:

so0OH1JYASrnXgn2 fL2VWgiunaLfSBhiWwv6oW7IMomOal31HoQzZB1rNJ
Fri Oct 05 17:16:54 IST 2012

3599

false

Bearer
x1f90NH1i83N4ETQLOxmSGogqfu9dKcRecFmBkxTklbbc6yHDEK
x1f90NH1i83N4ETQLOxmSGogqfu9dKcRecFmBkxTklbbc6yHDEK
Sat Oct 06 04:16:54 IST 2012

43199

false

true
https://localhost:8090/auth/userinfo.email

{department=engineering}

accesstoken.authn methods

The following methods are available to call on the accesstoken.authn message attribute:

${accesstoken.authn.getUserAuthentication () }
${accesstoken.authn.getAuthorizationRequest () .getScope () }
${accesstoken.authn.getAuthorizationRequest () .getClientId () }
${accesstoken.authn.getAuthorizationRequest () .getState() }
S{accesstoken.authn.getAuthorizationRequest () .getRedirectUri () }
0

${accesstoken.authn.getAuthorizationRequest () .getParameters () }

The following example shows output from querying each of the accesstoken.authn methods:

admin

[https://localhost:8090/auth/userinfo.email]

SampleConfidentialApp

343dgak32ksla

https://localhost/oauth callback

{client secret=6808d4b6-ef09-4b0d-8£28-3b05da9%c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant type=authorization code,
redirect uri=https://localhost/oauth_callback, state=null,
code=FOT4nudbglQouujR180H3EOMza0lQP, client id=SampleConfidentialApp}

authzcode methods

The following methods are available to call on the authzcode message attribute:

${authzcode.getCode () }
${authzcode.getState () }

Axway API Gateway 7.6.2 OAuth User Guide 124

Appendix A: OAuth 2.0 message attributes

${authzcode.getApplicationName () }
${authzcode.getExpiration () }
${authzcode.getExpiresIn () }
${authzcode.getRedirectURI () }
${authzcode.getScopes () }
${authzcode.getUserIdentity ()}
${authzcode.getAdditionalInformation () }

F8aHby7zctNRknmWlp3voe61H20Md1
sdsl2dsd3343ddsd

SampleConfidentialApp

Fri Oct 05 15:47:39 IST 2012

599 (expiry in secs)

https://localhost/oauth _callback
[https://localhost:8090/auth/userinfo.email]
admin

{costunit=hr}

oauth.client.details methods

The following example shows output from querying each of the authzcode methods:

The following methods are available to call on the cauth.client.details message attribute:

${oauth.client.details.getClientType () }
${ocauth.client.details.getApplication () }
${ocauth.client.details.getBase64EncodedCert () }
${ocauth.client.details.getX509Cert () }
${ocauth.client.details.getName ()}
${oauth.client.details.getDescription() }
${ocauth.client.details.getLogo ()}
${oauth.client.details.getApplicationID() }
${ocauth.client.details.getContactPhone () }
${ocauth.client.details.getContactEmail () }
${ocauth.client.details.getClientID() }
${ocauth.client.details.getClientSecret () }
${ocauth.client.details.getRedirectURLs () }
${ocauth.client.details.getScopes() }
${oauth.client.details.getDefaultScopes () }
${oauth.client.details.isEnabled() }

The following example shows output from querying each of the cauth.client.details

methods:

confidential

com.vordel.common.apiserver.model.Application@l26c334d

Axway API Gateway 7.6.2

OAuth User Guide 125

Appendix A: OAuth 2.0 message attributes

————— BEGIN CERTIFICATE-----MIICwzCCAasCBgE6HBsdpzANBgEND CERTIFICATE

CN=Change this for production

Demo App

Demo App Desc

https://localhost:80/images/logo.png

dce2efc8-e9d4-4976-8a0f-3d2a2ec3a26d

000-111-222-333

temp@axway.com

d0e8952f-cefe-18el-b2bf-8accdc456933

796501dd-7df5-4a94-alll-146c7bbab22a

[https://localhost:8088/redirect]

[com.vordel.common.apiserver.discovery.model.OAuthAppScope@6a25ce50]

[com.vordel.common.apiserver.discovery.model.OAuthAppScope@6a25ces0,
com.vordel.common.apiserver.discovery.model.OAuthAppScope@580clcal]

true

Example of querying a message attribute

If you add additional access token parameters to the OAuth Access Token Info filter, you can
return a lot of additional information about the token. For example:

"audience" :"SampleConfidentialApp",

"user id" :"admin",

"scope" :"https://localhost:8090/auth/userinfo.email",

"expires_in" :3567,

"Access Token Expiry Date" :"Wed Aug 15 11:19:19 IST 2012",

"Authentication parameters" :"{username=admin,
client secret=6808d4b6-ef09-4b0d-8£28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant type=password,
redirect uri=null, state=null, client id=SampleConfidentialApp,
password=xxxxxxxx}",

"Access Token Type:" :"Bearer"

Axway API Gateway 7.6.2 OAuth User Guide 126

Appendix A: OAuth 2.0 message attributes

You also have the added flexibility to add extra name/value pair settings to access tokens upon
generation. The OAuth 2.0 access token generation filters provide an option to store additional
parameters for an access token. For example, if you add the name/value pair
Department/Engineering to the Client Credentials filter:

Access Token using Client Credentials

&5
The client can request an Access Token using only its Client Credentials

Name: |Access Token using client credentials
Application validation | Access Token | Monitoring
Access Token will be stored here: | OAuth Access Token Store
Access Token Details
Access Token Expiry(in secs) |3600 Access Token Length |54 Access TokenType |Bearer

Refresh Token Details

*) Generate a new refresh token

@® Do not generate a refresh token

Store additional meta data with the access token which can subsequently be retrieved.
Name Value

Department Engineering

Generate Token Scopes

@ Getscopes from a registered application

IF scopes are in the request then they must makch | Any 2 | of the scopes registered for the application.
IF no scopes are in the request then scopes registered for the application will be used.

) Getscopes by calling a policy

You can then update the Access Token Info filter to add a name/value pair using a selector to get
the following value:

Department/${accesstoken.getAdditionalInformation () .get ("Department") }

For example:

Access Token Information

LF':

Far a given Access Token, return a json description of the token

Marne: | Access Token Infarmation |

Access Token Info Settings | Monicoring | Advanced

Feeturn additional Access Token parameters

Name Yalue
Deparkment ${accesstoken. getadditionalInformationd).get{"Department” -

Then the JSON response is as follows:

"audience" :"SampleConfidentialApp",
"user id" :"SampleConfidentialApp",
"scope" :"https://localhost:8090/auth/userinfo.email",

Axway API Gateway 7.6.2 OAuth User Guide 127

Appendix A: OAuth 2.0 message attributes

"expires_in" :3583,

"Access Token Type:" :"Bearer",

"Authentication parameters" :"{client secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant type=client credentials,
redirect uri=null, state=null, client id=SampleConfidentialApp}",

"Department" :"Engineering",

"Access Token Expiry Date" :"Wed Aug 15 12:10:57 IST 2012"

You can also use API Gateway selector syntax when storing additional information with the token.
For more details on selectors, see the API Gateway Policy Developer Guide.

OAuth scope attributes

In addition, the following message attributes are used by the OAuth filters to manage OAuth scopes.
The scopes are stored as a set of strings (for example, resource . READ and
resource.WRITE):

e scopes.in.token
Stores the OAuth scopes that have been sent in to the authorization server when requesting the
access token.

e scopes.for.token

Stores the OAuth scopes that have been granted for the access token request.
e scopes.required

Used by the Validate Access Token filter only. If there is a failure accessing an OAuth
resource due to incorrect scopes in the access token, an insufficent scope exception is
sent back in the WWW-Authenticate header. When Get scopes by calling a policy is
set, the configured policy can set the scopes. required message attribute. This enables
the OAuth resource server to properly interact with client applications and provide useful error
response messages. For example:

WWW-Authenticate Bearer realm="DefaultRealm",

error="insufficient scope",

error description="scope (s) associated with access token are not valid to access
this resource",

scope="Scopes must match All of these scopes:https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email"

OAuth SAML bearer attributes

The message attribute oauth. saml . doc is set on the message whiteboard by the Access Token
using SAML Assertion filter. This isa W3C DOM document view of the SAML bearer assertion that
API Gateway receives from an OAuth client application. The document in this form can be verified by

Axway API Gateway 7.6.2 OAuth User Guide 128

Appendix A: OAuth 2.0 message attributes

other filters, but in an OAuth context the XML Signature Verification is typically used. For more
information, see the XML Signature Verification filter in the API Gateway Policy Developer Filter

Reference.

OAuth 2.0 client message attributes

The OAuth 2.0 client policy filters in API Gateway generate message attributes that can be queried
further using the API Gateway selector syntax. The message attributes generated by the OAuth 2.0
client filters include the following:

« coauth.client.accesstoken

e cauth.client.application

For more details on selectors, see the API Gateway Policy Developer Guide.

oauth.client.accesstoken methods

The following methods are available to call on the cauth.client.accesstoken message

attribute:

S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.
S{oauth.

client.
client.
client.
client.
client.
client.
client.
client.
client.
client.

client.

accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.
accesstoken.

accesstoken.

getAuthentication() }
getClientId() }
getAccessToken () }
getCreated() }
isExpired()}
hasRefresh() }
getRefreshToken () }
getExpiresIn() }
getExpiryDate () }
getParams () }

getTokenType () }

The following example shows output from querying each of the

oauth.client.accesstoken methods:

false

true

3599

regadmin

ClientConfidentialApp
SIDnxbYabJwRZpKexUx6R3dTEWKO]j0afQo7sr2DrDYudaVCAbIxvPBk
Thu Mar 06 12:34:44 GMT 2014

GokdAuu706ydztNkl92UEPmNJRNMVBJIP1PVGGrEwXKz5Uh

Thu Mar 06 13:34:43 GMT 2014
{state=9a388d14-a0e9-4b32-9003-e322¢c93279dd, scope=resource.WRITE}

Axway API Gateway 7.6.2

OAuth User Guide 129

Appendix A: OAuth 2.0 message attributes

Axway API Gateway 7.6.2

oauth.client.application methods

This attribute represents the provider profile selected in the filter. It contains the provider details,

such as token and authorization endpoints, and the token store, as well as the specifics of the client

application including the client ID and secret. The following methods are available to call on the
oauth.client.application message attribute:

${ocauth.client.application.getTokenURL () }
${ocauth.client.application.getAuthentication() }
${ocauth.client.application.getProviderName () }
${oauth.client.application.getAppName () }
${ocauth.client.application.getClientID() }
${ocauth.client.application.getFlow() }
${ocauth.client.application.getClientSecret ()}
${ocauth.client.application.getExtraTokenRequestProps () }
${ocauth.client.application.getScopes () }
${ocauth.client.application.getLocationOfClientDetails ()}
${ocauth.client.application.getClientIdHeaderName () }
${ocauth.client.application.getClientSecretHeaderName () }
${ocauth.client.application.getTokenStore ()}
${ocauth.client.application.getToken () }
${ocauth.client.application.getTokenFromStore () }
${ocauth.client.application.getProvider () }

The following example shows output from querying each of the
oauth.client.application methods:

https://127.0.0.1:8089/api/ocauth/token

regadmin

API Gateway

Sample Client Authzcode App

ClientConfidentialApp

authorization code

9cb76d80-1bc2-48d3-8d31-edeecO0fddf6c

{}

[resource.WRITE]

QueryString

client id

client secret

an object of type com.vordel.circuit.oauth.persistence.SynchronizedClientTokenStore
an object of type com.vordel.oauth.client.store.OAuth2ClientAccessToken
an object of type com.vordel.oauth.client.store.OAuth2ClientAccessToken

an object of type com.vordel.oauth.client.providers.BaseOAuth2Provider

OAuth User Guide 130

	 Preface
	Who should read this guide
	How to use this guide
	Related documentation
	Support services
	Training services

	 Accessibility
	Screen reader support
	Support for high contrast and accessible use of colors

	 Updates and revisions
	Changes in version 7.6.2
	Changes in version 7.6.1
	Changes in version 7.6.0

	 1 OAuth and OpenID Connect concepts
	OAuth 2.0
	OpenID Connect 1.0

	 2 Introduction to API Gateway OAuth 2.0 server
	API Gateway OAuth concepts
	OAuth server example workflow
	API Gateway OAuth server features

	 3 API Gateway OAuth 2.0 authentication flows
	Run the sample scripts
	Authorization code grant (or web server) flow
	Obtain an access token
	Run the sample client

	Implicit grant (or user agent) flow
	Obtain an access token
	Run the sample client

	Resource owner password credentials flow
	Request an access token
	Handle the response
	Run the sample client

	Client credentials grant flow
	Request an access token
	Handle the response
	Run the sample client

	JWT flow
	Create a JWT bearer token
	Request an access token
	Handle the response
	Run the sample client

	Revoke token flow
	Run the sample client
	Response codes

	Token information service flow
	Run the sample client
	Response codes

	 4 Set up API Gateway as an OAuth 2.0 server
	Enable OAuth endpoints

	 5 API Gateway as an OAuth 2.0 authorization server
	Authorization server policies and filters
	Manage access tokens and authorization codes

	 6 OAuth 2.0 authorization server filters
	Get access token information
	Overview
	Token settings
	Monitoring settings
	Advanced settings

	Get access token using authorization code
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using client credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using JWT
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using SAML assertion
	Overview
	SAML assertion validation settings
	Access token settings
	Monitoring settings

	Consume authorization requests
	Validation settings
	Authorization code settings
	Access token settings
	Advanced settings

	Refresh access token
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using resource owner credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Revoke token
	Overview
	Revoke token settings
	Monitoring settings

	 7 API Gateway as an OAuth 2.0 resource server
	Resource server policies and filters
	Create custom OAuth protected resources

	Register and manage OAuth client applications
	Manage client applications in the Client Application Registry
	Scopes in API Gateway
	Client Application Registry storage and settings

	 8 OAuth 2.0 resource server filters
	Validate access token
	Overview
	General settings
	Response codes

	 9 API Manager as an OAuth 2.0 resource server
	Protect APIs with OAuth
	Scopes in API Manager
	Enable global scopes in API Manager

	Authorization management in API Manager
	View and revoke OAuth authorizations in API Manager

	Register and manage client applications in API Manager

	 10 Set up API Gateway OAuth client
	Import sample client applications

	 11 API Gateway as an OAuth 2.0 client
	Introduction to API Gateway OAuth client
	API Gateway OAuth client features
	OAuth 2.0 example client workflow

	Client policies and filters
	Configure OAuth client application credentials
	Add application credentials
	Add OAuth provider
	Create a callback URL listener

	Manage client access tokens
	Set Bearer token in authorization header

	 12 OAuth 2.0 client filters
	Delete an OAuth client access token
	Overview
	General settings

	Get OAuth client access token
	Overview
	General settings
	SSL settings
	Additional settings

	Redirect resource owner to authorization server
	Overview
	General settings

	Refresh an OAuth client access token
	Overview
	General settings
	SSL settings
	Additional settings

	Retrieve OAuth client access token from token storage
	Overview
	General settings

	Save an OAuth client access token
	Overview
	General settings

	Set Bearer token in authorization header

	 13 API Gateway and OpenID Connect
	Introduction to API Gateway OpenID Connect
	OpenID Connect concepts
	Relationship to OAuth 2.0
	Prerequisites

	OpenID Connect flow
	Build an OpenID Connect IdP server
	Build an OpenID Connect client

	 14 OpenID Connect filters
	Create an OpenID Connect ID token
	General settings

	Verify an OpenID Connect ID token
	General settings

	 15 API Gateway OAuth client demo
	Client policies

	 16 Deploy OAuth configuration
	Deploy the OAuth service
	Deploy the OAuth client demo

	Appendix A: OAuth 2.0 message attributes
	OAuth 2.0 server message attributes
	accesstoken methods
	accesstoken.authn methods
	authzcode methods
	oauth.client.details methods
	Example of querying a message attribute
	OAuth scope attributes
	OAuth SAML bearer attributes

	OAuth 2.0 client message attributes
	oauth.client.accesstoken methods
	oauth.client.application methods

